[1] 谢伟, 明保清. 优质蛋鸡智能化健康养殖技术示范与推广[J]. 现代化农业, 2018(1): 64-65.
[2] 白士宝, 滕光辉, 杜晓冬, 等. 基于LabVIEW平台的蛋鸡舍环境舒适度实时监测系统设计与实现[J]. 农业工程学报, 2017, 33(15): 237-244.
Bai Shibao, Teng Guanghui, Du Xiaodong, et al. Design and implementation on realtime monitoring system of laying hens environmental comfort based on LabVIEW [J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(15): 237-244.
[3] 张瑞娟. 中国肉鸡产业发展现状及趋势[J]. 江苏农业科学, 2016, 44(1): 448-451.
[4] 李保明, 王阳, 郑炜超, 等. 中国规模化养鸡环境控制关键技术与设施设备研究进展[J]. 农业工程学报, 2020, 36(16): 212-221.
Li Baoming, Wang Yang, Zheng Weichao, et al. Research progress in environmental control key technologies, facilities and equipment for laying hen production in China [J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(16): 212-221.
[5] 胡子康, 姜来, 王辉, 等. 基于欠驱动原理死鸡捡拾末端执行器设计与仿真分析[J]. 东北农业大学学报, 2021, 52(6): 78-86.
Hu Zikang, Jiang Lai,Wang Hui, et al. Design and simulation analysis of dead chicken picking endeffector based on under actuated principle [J]. Journal of Northeast Agricultural University, 2021, 52(6): 78-86.
[6] Ghosal S, Blystone D, Singh A K, et al. An explainable deep machine vision framework for plant stress phenotyping [J]. Proceedings of the National Academy of Sciences, 2018, 115(18): 4613-4618.
[7] Ren G, Lin T, Ying Y, et al. Agricultural robotics research applicable to poultry production: A review [J]. Computers and Electronics in Agriculture, 2020, 169: 105216.
[8] 冯青春, 王秀, 邱权, 等. 畜禽舍防疫消毒机器人设计与试验[J]. 智慧农业(中英文), 2020, 2(4): 79-88.
Feng Qingchun, Wang Xiu, Qiu Quan, et al. Design and test of disinfection robot for livestock and poultry house [J]. Smart Agriculture, 2020, 2 (4): 79-88.
[9] Liu H W, Chen C H, Tsai Y C, et al. Identifying images of dead chickens with a chicken removal system integrated with a deep learning algorithm [J]. Sensors, 2021, 21(11): 3579.
[10] 李腾飞. 笼养蛋鸡健康行为监测机器人系统研究[D]. 北京: 中国农业大学, 2016.
Li Tengfei. Study on caged layer health behavior monitoring robot system [D]. Beijing: China Agricultural University, 2016.
[11] 杨阳, 杨静宇. 基于显著性分割的红外行人检测[J]. 南京理工大学学报, 2013, 37(2): 251-256.
Yang Yang, Yang Jingyu. Pedestrian detection of infrared images based on saliency segmentation [J]. Journal of Nanjing University of Science and Technology, 2013, 37(2): 251-256.
[12] 崔美玉. 论红外热像仪的应用领域及技术特点[J]. 中国安防, 2014(12): 90-93.
[13] Liu B, Zhu W, Huo G. An image fusion algorithm of infrared thermal and optical images for pig contour [J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(17): 113-120.
[14] 王秋萍, 张志祥, 朱旭芳, 等. 图像分割方法综述[J]. 信息记录材料, 2019, 20(7): 12-14.Wang Qiuping, Zhang Zhixiang,Zhu Xufang, et al. Comprehensive summary of Image segmentation [J]. Information Recording Materials, 2019, 20(7): 12-14.
[15] Lian J, Yang Z, Liu J, et al. An overview of image segmentation based on pulsecoupled neural network [J]. Archives of Computational Methods in Engineering, 2021, 28: 387-403.
[16] Tabuaciri P, Bunter K L, Graser H U. Thermal imaging as a potential tool for identifying piglets at risk [C]. AGBU Pig Genetics Workshop. Armidale, Australia: Animal Genetics and Breeding Unit, University of New England, 2012: 23-30.
[17] 周丽萍, 陈志, 陈达, 等. 基于改进Otsu算法的生猪热红外图像耳根特征区域检测[J]. 农业机械学报, 2016, 47(4): 228-232.
Zhou Liping, Chen Zhi,Chen Da, et al. Pig ear root detection based on adapted Otsu [J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(4): 228-232.
[18] 瞿子淇. 无人养鸡场死鸡检测方法研究[D]. 吉林: 吉林大学, 2019.
Zhai Ziqi. Study on detection method of dead chicken in unmanned chicken farm [D]. Jilin: Jilin University, 2019.
[19] 魏长宝, 李平. 在禽群病死个体检测中的应用机器视觉技术的探讨[J]. 电子器件, 2015, 38(4): 826-830.Wei Changbao, Li Ping.Machine vision technology in application to detecting ill individuals of flocks [J]. Electronic Devices, 2015, 38(4): 826-830.
[20] 毕敏娜, 张铁民, 庄晓霖, 等. 基于鸡头特征的病鸡识别方法研究[J]. 农业机械学报, 2018, 49(1): 51-57.
Bi Minna, Zhang Tiemin,Zhuang Xiaolin, et al. Recognition method of sick yellow feather chicken based on head features [J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(1): 51-57.
[21] 李亚硕, 毛文华, 胡小安, 等. 基于机器视觉识别鸡冠颜色的病鸡检测方法[J]. 机器人技术与应用, 2014, 21(5): 23-25.
|