[1] Zhang Y, Liu J, Yan Z, et al. Effects of ultrasonic seed treatment on rice performances under the seawater irrigation [J]. International Journal of Experimental Botany, 2023, 92(1): 10-16.
[2] Rassaei F. Nitrous oxide emissions from rice paddy: Impacts of rice straw and water management [J]. Environmental Progress & Sustainable Energy, 2023, 15(3): 25-31.
[3] 袁源远, 刘瑛, 吴建富, 等. 稻田土壤铜含量对水稻籽粒灌浆特性与产量的影响[J]. 核农学报, 2023, 37(1): 188-195.
Yuan Yuanyuan, Liu Ying, Wu Jianfu, et al. Effects of the content of cu on grain filling properties and grain yield in paddy soils[J]. Journal of Nuclear Agricultural Sciences, 2023, 37(1): 188-195.
[4] Lin B, Wang X, Jin S, et al. Impacts of cooperative membership on rice productivity: Evidence from China [J]. World Development, 2022, 15(3):62-68.
[5] Ma Y. Effect of steam flashexplosion on physicochemical properties and structure of hightemperature denatured defatted rice bran protein isolate [J]. Molecules, 2023, 8(2): 23-27.
[6] Shi C H, Cao M P, Hu G X. Contamination status and safety assessment of heavy metals in rice consumed in Songjiang District [J]. Journal of Food Safety & Quality, 2021, 17(6): 36-40.
[7] Xiao G U, Lu M C, Jin J H, et al. Principal component analysis and cluster analysis of Japonica rice quality in Songjiang District of Shanghai [J]. Acta Agriculture Shanghai, 2022, 38(6): 102-108.
[8] 蒋丽君, 石国忠. 松江稻米产销现状与产业发展建议[J]. 农技服务, 2019, 36(10): 105-106.
[9] 车琳, 蒋沁宏, 王也, 等. 我国水稻五大产区虫害发生及防控情况差异的比较分析[J]. 植物保护, 2022, 48(3): 233-241.
[10] Chou C, Hadi B, Chiba S, et al. An entomopathogenic fungus and a natural extract benefit rice (Oryza sativa) by suppressing populations of insect pests while keeping high populations of their natural enemies [J]. Biological Control: Theory and Application in Pest Management, 2022, 16 (5): 170-176.
[11] 韩雨昊, 曹丽君, 王友起,等. 基于决策树CART算法的虫害预测模型分析[J]. 现代化农业, 2022, 6(1): 45-47.
[12] 徐会杰, 黄仪龙, 刘曼. 基于改进YOLOv3模型的玉米叶片病虫害检测与识别研究[J]. 南京农业大学学报, 2022, 45(6): 1276-1285.
[13] Mandal D S, Samanta S, Parshad R D, et al. Study of a croppestnatural enemy model with Ztype controlAn approach to pest management [J]. International Journal of Biomathematics, 2023, 16(4): 54-62.
[14] 王江晴, 冀星, 莫海芳, 等. 基于轻量化VGG的植物病虫害识别[J]. 中国农机化学报, 2022, 43(4): 25-31.
Wang Jiangqing, Ji Xing, Mo Haifang, et al. Plant disease detection based on lightweight VGG [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(4): 25-31.
[15] Hou X, Liu B, Wang Y, et al. Complex dynamics in a Filippov pest control model with group defense [J]. International Journal of Biomathematics, 2022, 15(8): 68-75.
[16] Gao Y, Sun C, Ramos T B, et al. Modeling nitrogen dynamics and biomass production in rice paddy fields of cold regions with the ORYZAN model [J]. Ecological Modeling, 2023, 47(5): 78-84.
[17] Zhu X, Wei C, Zhang F, et al. Influencing factors of farmers land circulation in mountainous Chongqing in China based on a multiclass logistic model [J]. Sustainability, 2022, 14(3): 124-128.
[18] Nakayama S, Chikaraishi M. Doubly generalized logit: A closedform discrete choice model system with multivariate generalized extreme value distributed utilities [J]. Transportation Research Part C: Emerging Technologies, 2021, 13(2): 103-108.
[19] Palangetic M, Cornelis C, Greco S, et al. Granular representation of OWA-based fuzzy rough sets [J]. Fuzzy Sets and Systems, 2022, 30(7): 44-51.
[20] Hyun S Y, Kim K. An evaluation of estimability of parameters in the statespace nonlinear logistic production model [J]. Fisheries Research, 2022, 24(5): 106-113.
[21] Shang Z, Qiao Y. Multiple bifurcations in a predatorprey system of modified Holling and Leslie type with double Allee effect and nonlinear harvesting [J]. Mathematics and Computers in Simulation (MATCOM), 2023, 20(5): 95-101.
[22] Tang X. Periodic solutions and spatial patterns induced by mixed delays in a diffusive spruce budworm model with Holling II predation function [J]. Mathematics and Computers in Simulation (MATCOM), 2022, 19(2): 84-90.
[23] 周翔宇, 吴建华. 一类带MichaelisMenten收获项的Holling-Ⅳ型捕食—食饵模型的定性分析[J]. 应用数学学报, 2019, 42(1): 11-17.
[24] Qga B, Envelope D. Global dynamics of a twospecies LotkaVolterra competitiondiffusionadvection system with general carrying capacities and intrinsic growth rates II: Different diffusion and advection rates [J]. Journal of Differential Equations, 2023, 34(1): 35-42
[25] Govindaraj S, Rathinam S. Approximate analytical expression of diffusive LotkaVolterra preypredator equations via variation iteration method [J]. Journal of Applied Nonlinear Dynamics, 2022, 8(3): 11-17.
[26] Ma M, Yue Y, Ou C. Bistable wave speed of a LotkaVolterra system with nonlocal dispersal [J]. SCIENTIA SINICA Mathematica, 2022, 52(4): 381-388.
[27] 周起梅, 林思佳, 陈凤德,等. Allee效应对LotkaVolterra捕食—食饵模型的动力学行为影响[J]. 福州大学学报(自然科学版), 2022, 50(6): 723-728.
Zhou Qimei, Lin Sijia, Chen Fengde, et al. Influence of Allee effect on the dynamic behaviors of LotkaVolterra predatorprey model [J]. Journal of Fuzhou University (Natural Science Edition), 2022, 50(6): 723-728.
[28] Freeman J, Hard R J, Mauldin R P, et al. Radiocarbon data may support a MalthusBoserup model of huntergatherer population expansion [J]. Journal of Anthropological Archaeology, 2021, 63(2): 101-108.
[29] Liu Y, Liu S, Xu J, et al. Forest pest identification based on a new dataset and convolutional neural network model with enhancement strategy[J]. Computers and Electronics in Agriculture, 2022, 19(2): 106-112.
[30] Didham R K, Morgan S, Binks N A, et al. Functional group dependent responses of forest bird communities to invasive predator control and habitat fragmentation [J]. Diversity and Distributions, 2022, 28(6): 1298-1312.
[31] Rong M, Wang Z, Ban B, et al. Pest identification and counting of yellow plate in field based on improved Mask R-CNN [J]. Discrete Dynamics in Nature and Society, 2022, 12(2): 74-79.
[32] Martynyuk A A, Shen J H, Stavroulakis I P. Stability theorems in impulsive functional differential equations with infinite delay [J]. Advances in Stability Theory at the End of Century, 2022, 15(6): 88-93.
[33] Basir F A, Samanta S, Tiwari P K. Bistability, generalized and zerohopf bifurcations in a pest control model with farming awareness [J]. Journal of Biological Systems, 2023, 31(1): 115-120.
[34] Veeresha P, Akinyemi L. Fractional approach for mathematical model of phytoplanktontoxic phytoplanktonzooplankton system with MittagLeffler kernel [J]. International Journal of Biomathematics, 2023, 16(3): 102-106.
[35] Ma R, Li J, Jin F, et al. Fuzzy theorybased energysaving control of solar thermal supplemental multienergy heating system [J]. Energy Reports, 2022, 8: 636-646.
(上接第39页)
[35] 秦翠兰. 棉秆力学性能的研究[D]. 阿拉尔: 塔里木大学, 2016.
Qin Cuilan. Study on mechanical properties of cotton stalk [D]. Alaer: Tarim University, 2016.
[36] 杜现军. 棉秆力学特性研究与切割实验台的研制[D]. 泰安: 山东农业大学, 2011.
Du Xianjun. Cotton stalk mechanical characteristics research and development of cutting test bench [D]. Taian: Shandong Agricultural University, 2011.
[37] 宋占华, 宋华鲁, 闫银发, 等. 棉花秸秆往复式切割器动刀片优化设计 [J]. 农业工程学报, 2016, 32(6): 42-49.
Song Zhanhua, Song Hualu, Yan Yinfa, et al. Optimizing design on knife section of reciprocating cutter bars for harvesting cotton stalk [J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(6): 42-49.
[38] 温宝琴, 高广娣, 葛云, 等. 齿形链式切割器切割棉秆试验研究[J]. 农业机械, 2012(34): 134-135.
[39] 丁龙朋. 锯片式棉秆切割试验台的设计与试验研究[D]. 石河子: 石河子大学, 2015.
Ding Longpeng. Design and experimental study on saw type cotton stalk cutting test bench [D]. Shihezi: Shihezi University, 2015.
[40] 李景彬, 葛云, 朱江丽, 等. 棉秆收获切割性能的试验与研究[C]. 中国农业机械学会国际学术年会, 2012, 1142-1144.
[41] 李玉道. 回转式棉花秸秆切割试验台的研制与试验研究[D]. 泰安: 山东农业大学, 2012.Li Yudao. Rotary experimental study on development of cotton stalk cutting test bench and experimental investigations [D]. Taian: Shandong Agricultural University, 2012.
[42] 李鸿. 巨菌草收获机关键部件设计与试验研究[D]. 福州: 福建农林大学, 2020.
Li Hong. Design and experimental study on the key components of pennisetum giganteum harvester [D]. Fuzhou: Fujian Agriculture and Forestry University, 2020.
[43] 梁晓. 巨菌草茎秆力学特性研究与单圆盘切割试验仿真[D]. 福州: 福建农林大学, 2015.〖JP2〗Liang Xiao. The experiment study on mechanic characteristic of puelia stalks and single disc cutting experiment simulation [D]. Fuzhou: Fujian Agriculture and Forestry University, 2015.〖JP〗
[44] 陈文滔. 成熟期菌草茎秆力学特性研究及切割仿真分析[D]. 福州: 福建农林大学, 2016.
Chen Wentao. Study on mechanical properties and cutting simulation of mature stalk of JUNCAO [D]. Fuzhou: Fujian Agriculture and Forestry University, 2016.
[45] 陈文滔, 方兵, 郑志聪, 等. 单圆盘式巨菌草茎秆切割器的设计与仿真分析[J]. 机电技术, 2018(6): 11-14
|