[1] Manavalan R. Automatic identification of diseases in grains crops through computational approaches:A review [J]. Computers and Electronics in Agriculture, 2020, 178: 105802.
[2] Ang K L M, Seng J K P. Big data and machine learning with hyperspectral information in agriculture [J]. IEEE Access, 2021, 9: 36699-36718.
[3] Ruwona J, Scherm H. Sensing and imaging of plant disease through the lens of science mapping [J]. Tropical Plant Pathology, 2022, 47(1): 74-84.
[4] 宋勇, 陈兵, 王琼, 等. 无人机遥感监测作物病虫害研究进展[J]. 棉花学报, 2021, 33(3): 291-306.
Song Yong, Chen Bing, Wang Qiong, et al. Research advances of crop diseases and insect pests monitoring by unmanned aerial vehicle remote sensing [J]. Cotton Science, 2021, 33(3): 291-306.
[5] Chivasa W, Mutanga O,Biradar C. UAVBased multispectral phenotyping for disease resistance to accelerate crop improvement under changing climate conditions [J]. Remote Sensing, 2020, 12(15): 2445.
[6] 翟肇裕, 曹益飞, 徐焕良, 等. 农作物病虫害识别关键技术研究综述[J]. 农业机械学报, 2021, 52(7): 1-18.
Zhai Zhaoyu, Cao Yifei, Xu Huanliang, et al. Review of key techniques for crop disease and pest detection [J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(7): 1-18.
[7] 张凝, 杨贵军, 赵春江, 等. 作物病虫害高光谱遥感进展与展望[J]. 遥感学报, 2021, 25(1): 403-422.
Zhang Ning, Yang Guijun, Zhao Chunjiang, et al. Progress and prospects of hyperspectral remote sensing technology for crop diseases and pests [J]. National Remote Sensing Bulletin, 2021, 25(1): 403-422.
[8] 白雪冰, 余建树, 傅泽田, 等. 光谱成像技术在作物病害检测中的应用进展与趋势[J]. 光谱学与光谱分析, 2020, 40(2): 350-355.Bai Xuebing, Yu Jianshu, Fu Zetian, et al. Application of spectral imaging technology for detecting crop disease information: A review [J]. Spectroscopy and Spectral Analysis, 2020, 40(2): 350-355.
[9] 刁智华, 袁万宾, 刁春迎, 等. 病害特征在作物病害识别中的应用研究综述[J]. 江苏农业科学, 2019, 47(5): 71-74.Diao Zhihua, Yuan Wanbin, Diao Chunying, et al. Application of disease characteristics in crop disease identification: A review [J]. Jiangsu Agricultural Sciences, 2019, 47(5): 71-74.
[10] 竞霞, 邹琴, 白宗璠, 等. 基于反射光谱和叶绿素荧光数据的作物病害遥感监测研究进展[J]. 作物学报, 2021, 47(11): 2067-2079.
Jing Xia, Zou Qin, Bai Zongfan, et al. Research progress of crop diseases monitoring based on reflectance and chlorophyll fluorescence data [J]. Acta Agronomica Sinica, 2021, 47(11): 2067-2079.
[11] Abade A, Ferreira P A, Vidal F D, et al. Plant diseases recognition on images using convolutional neural networks: A systematic review [J]. Computers and electronics in agriculture, 2021, 185.
[12] Liu Z Q, Zhu Y J, Shi H B, et al. Recent progress in rice broadspectrum disease resistance [J]. International journal of molecular sciences, 2021, 22(21): 11658.
[13] Fedele G, Brischetto C, Rossi V, et al. A systematic map of the research on disease modelling for agricultural crops worldwide [J]. Plants, 2022, 11(6): 724.
[14] 曹天正, 韩冬梅, 宋献方, 等. 滨海地区地表水—地下水相互作用研究进展的文献计量分析[J]. 地球科学进展, 2020, 35(2): 154-166.Cao Tianzheng, Han Dongmei, Song Xianfang, et al. Bibliometric analysis of research progress on coastal surface water and groundwater interaction [J]. Advances in Earth Science, 2020, 35(2): 154-166.
[15] 李继宇, 胡潇丹, 兰玉彬, 等. 基于文献计量学的2001—2020全球农用无人机研究进展[J]. 农业工程学报, 2021, 37(9): 328-339.
Li Jiyu, Hu Xiaodan, Lan Yubin, et al. Research advance on worldwide agricultural UAVs in 2001—2020 based on bibliometrics [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(9): 328-339.
[16] 钟菊新, 唐红琴, 何铁光, 等. 基于文献计量法的土壤细菌研究进展[J]. 中国农机化学报, 2021, 42(12): 228-236.
Zhong Juxin, Tang Hongqin, He Tieguang, et al. Research progress of soil bacteria based on bibliometrics [J]. Journal of Chinese Agricultural Mechanization, 2021, 42(12): 228-236.
[17] 李爽, 翟琰琦. 1999—2016年期刊《绿色化学》载文的计量分析[J]. 化学通报, 2018, 81(7): 660-666.Li Shuang, Zhai Yanqi. A metrology analysis of articles published on green chemistry from 1999 to 2016 [J]. Chemistry, 2018, 81(7): 660-666.
[18] 贾少鹏, 高红菊, 杭潇. 基于深度学习的农作物病虫害图像识别技术研究进展[J]. 农业机械学报, 2019, 50(S1): 313-317.
Jia Shaopeng, Gao Hongju, Hang Xiao. Research progress on image recognition technology of crop pests and diseases based on deep learning [J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(S1): 313-317.
[19] Tripathi A, Chourasia U,Dixit P. A survey: Plant disease detection using deep learning [J]. International Journal of Distributed Systems and Technologies, 2021, 12(3): 1-26.
[20] Shi Y, Huang W J, Luo J, et al. Detection and discrimination of pests and diseases in winter wheat based on spectral indices and kernel discriminant analysis [J]. Computers and Electronics in Agriculture, 2017, 141: 171-180.
[21] Price D J S. Little science, big science [M]. NYC: Columbia University Press, 1963.
[22] Math R M, Dharwadkar N V. Early detection and identification of grape diseases using convolutional neural networks [J]. Journal of plant diseases and protection, 2022, 129(3): 521-532.
[23] Thangaraj R, Anandamurugan S, Kaliappan V K. Automated tomato leaf disease classification using transfer learningbased deep convolution neural network [J]. Journal of Plant Diseases and Protection, 2020, 128(1): 73-86.
[24] Lee S. Deep structured learning: Architectures and applications [J]. The International Journal of Advanced Culture Technology, 2018, 6(4): 262-265.
[25] 孙文斌, 王荣, 高荣华, 等. 基于可见光谱和改进注意力的农作物病害识别[J]. 光谱学与光谱分析, 2022, 42(5): 1572-1580.
Sun Wenbin, Wang Rong, Gao Ronghua, et al. Crop diseases recognition based on visible spectrum and improved attention module [J]. Spectroscopy and Spectral Analysis, 2022, 42(5): 1572-1580.
[26] Dar A A, Sharma S, Mahajan R, et al. Overview of purple blotch disease and understanding its management through chemical, biological and genetic approaches [J]. Journal of Integrative Agriculture, 2020, 19(12): 3013-3024.
[27] 吾木提·艾山江, 尼加提·卡斯木, 陈晨, 等. 基于多维高光谱植被指数的冬小麦叶面积指数估算[J]. 农业机械学报, 2022, 53(5): 181-190.
Umut Hasan, Nijat Kasim, Chen Chen, et al. Estimation of winter LAI based on multidimensional hyperspectral vegetation indices [J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(5): 181-190.
[28] Beest D E T, Shaw M W, Paveley N D, et al. Evaluation of a predictive model for Mycosphaerella graminicola for economic and environmental benefits [J]. Plant Pathology, 2009, 58(6): 1001-1009.
|