[1] 刘雅娴. 不同营养条件下的鲜烟素质与烘烤工艺[D]. 北京:中国农业科学院, 2020.
Liu Yaxian. Study on the fresh tobacco leaves quality and curing technology under different nutritional conditions [D]. Beijing: Chinese Academy of Agricultural Sciences, 2020.
[2] Chen Y, Bin J, Zou C, et al. Discrimination of fresh tobacco leaves with different maturity levels by nearinfrared (NIR) spectroscopy and deep learning [J]. Journal of Analytical Methods in Chemistry, 2021, 2021.
[3] 高宪辉, 王松峰, 孙帅帅, 等. 鲜烟成熟度颜色值指标及其判别函数研究[J]. 中国烟草学报, 2017, 23(1): 77-85.
Gao Xianhui, Wang Songfeng, Sun Shuaishuai, et al. Study on color space databased discriminating functions of fresh tobacco at various mature stages [J]. Acta Tabacaria Sinica, 2017, 23(1): 77-85.
[4] 刘辉, 祖庆学, 王松峰, 等. 不同成熟度对鲜烟素质和烤后烟叶质量的影响[J]. 中国烟草科学, 2020, 41(2): 66-71, 78.
Liu Hui, Zu Qingxue, Wang Songfeng, et al. Effect of different maturity on the quality features of fresh and cured tobacco [J]. Chinese Tobacco Science, 2020, 41(2): 66-71, 78.
[5] Kim W S, Lee D H, Kim Y J. Machine visionbased automatic disease symptom detection of onion downy mildew [J]. Computers and Electronics in Agriculture, 2020, 168: 105099.
[6] Hasan M J, Mahbub S, Alom M S, et al. Rice disease identification and classification by integrating support vector machine with deep convolutional neural network [C]. 2019 1st international Conference on Advances in Science, Engineering and Robotics Technology (ICASERT). IEEE, 2019: 1-6.
[7] 李东洋, 谢琳. 基于计算机视觉的农业自动化技术研究[J].农村实用技术, 2020(12): 19-20.
[8] 李颀, 王康, 强华, 等. 基于颜色和纹理特征的异常玉米种穗分类识别方法[J]. 江苏农业学报, 2020, 36(1): 24-31.
Li Qi, Wang Kang, Qiang Hua, et al. Classification and recognition method of abnormal corn ears based on color and texture features [J]. Jiangsu Journal of Agricultural Sciences, 2020, 36(1): 24-31.
[9] Bhargava A, Bansal A. Quality evaluation of Mono & biColored Apples with computer vision and multispectral imaging [J]. Multimedia Tools and Applications, 2020, 79: 7857-7874.
[10] 刘翠翠, 杨涛, 马京晶, 等. 基于PCA-SVM的麦冬叶部病害识别系统[J]. 中国农机化学报, 2019, 40(8): 132-136.
Liu Cuicui, Yang Tao, Ma Jingjing, et al. Identification system for leaf diseases of ophiopogon japonicus based on PCA-SVM [J]. Journal of Chinese Agricultural Mechanization, 2019, 40(8): 132-136.
[11] 牛晓伟. 基于机器视觉的番茄病害识别系统的研究[D]. 兰州: 兰州理工大学, 2021.
Niu Xiaowei. Research on tomato disease recognition system based on machine vision [D]. Lanzhou: Lanzhou University of Technology, 2021.
[12] 彭明霞, 夏俊芳, 彭辉. 融合FPN的Faster R-CNN复杂背景下棉田杂草高效识别方法[J]. 农业工程学报, 2019, 35(20): 202-209.
Peng Mingxia, Xia Junfang, Peng Hui. Efficient recognition of cotton and weed in field based on Faster R-CNN by integrating FPN [J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(20): 202-209.
[13] 赵立新, 侯发东, 吕正超, 等. 基于迁移学习的棉花叶部病虫害图像识别[J]. 农业工程学报, 2020, 36(7): 184-191.
Zhao Lixin, Hou Fadong, Lü Zhengchao, et al. Image recognition of cotton leaf diseases and pests based on transfer learning [J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(7); 184-191.
[14] 李辉, 罗敏, 岳佳欣. 基于计算机视觉技术的水稻病害图像识别研究进展[J]. 湖北农业科学, 2022, 61(4): 9-15.
Li Hui, Luo min, Yue Jiaxin. Research progress of recognition of rice disease images based on computer vision technology [J]. Hubei Agricultural Sciences, 2022, 61(4): 9-15.
[15] 付豪, 万鹏, 施家伟, 等. 基于机器视觉的玉米幼苗叶面积检测装置设计及试验[J]. 华中农业大学学报, 2020, 39(1): 161-170.
Fu Hao, Wan Peng, Shi Jiawei, et al. Design and test of nondestructive detecting device for corn seedling leaf area based on machine vision [J]. Journal of Huazhong Agricultural University, 2020, 39(1): 161-170.
[16] 彭要奇, 肖颖欣, 郑永军, 等. 无人机光谱成像技术在大田中的应用研究进展[J]. 光谱学与光谱分析, 2020, 40(5): 1356-1361.
Peng Yaoqi, Xiao Yingxin, Zheng Yongjun, et al. Research progress in the application of UAV spectral imaging technology in field [J]. Spectroscopy and Spectral Analysi, 2020, 40(5): 1356-1361.
[17] 史龙飞, 宋朝鹏, 贺帆, 等. 基于机器视觉技术的烤烟鲜烟叶成熟度检测[J]. 湖南农业大学学报(自然科学版), 2012, 38(4): 446-450.
Shi Longfei, Song Chaopeng, He Fan, et al. Determination of the maturity grades of fresh leaves for Fluecured tobacco [J]. Journal of Hunan Agricultural University (Natural Sciences), 2012, 38(4): 446-450.
[18] 谢滨瑶, 祝诗平, 黄华. 基于BPNN和SVM的烟叶成熟度鉴别模型[J]. 中国烟草学报, 2019, 25(1): 45-50.
Xie Binyao, Zhu Shiping, Huang Hua. Model for identification of tobacco leaf maturity based on BPNN and SVM [J]. Acta Tabacaria Sinica, 2019, 25(1): 45-50.
[19] 贾炳文. 基于机器视觉与深度学习的烟叶定级研究[D]. 昆明: 昆明理工大学, 2019.
Jia Bingwen. Based on machine vision and deep learning for the research of tobacco leaf grading [D]. Kunming: Kunming University of Science and Technology, 2019.
[20] 郭朵朵. 基于机器视觉的烟草烘烤品质检测及控制系统的设计[D]. 咸阳: 西北农林科技大学, 2017.
Guo Duoduo. Detection of tobacco baking quality and design of control system based on machine vision [D]. Xianyang: Northwest A & F University, 2017.
[21] 王士鑫. 基于卷积神经网络(CNN)的烤烟烟叶质量分级研究[D]. 昆明: 云南师范大学, 2020.
Wang Shixin. Quality classification of fluecured tobacco leaf based on Convolutional Neural Network (CNN) [D]. Kunming: Yunnan Normal University, 2020.
[22] 许自成, 赵瑞蕊, 王龙宪, 等. 烟叶成熟度的研究进展[J]. 东北农业大学学报, 2014.
Xu Zicheng, Zhao Ruirui, Wang Longxian, et al. Research advance of maturity of fluecured tobacco leaves [J]. Journal of Northeast Agricultural University,2014.
[23] 杨倩, 高晓阳, 武季玲, 等. 基于颜色和纹理特征的大麦主要病害识别研究[J]. 中国农业大学学报, 2013, 18(5): 129-135.
Yang Qian, Gao Xiaoyang, Wu Jiling, et al. Research on the identification of major barley diseases based on color and texture features [J]. Journal of China Agricultural University, 2013, 18(5): 129-135.
[24] 朱超岩, 姚晓东. 基于遗传算法优化的支持向量机在变压器故障诊断中应用[J]. 仪表技术, 2019(3): 21-23, 32.
Zhu Chaoyan, Yao Xiaodong. Application of the support vector machine in the fault diagnosis on the transformer based on the optimal genetic algorithm [J]. Instrumentation Technology, 2019(3): 21-23, 32.
[25] 马创, 王尧, 李林峰. 基于遗传算法与支持向量机的水质预测模型[J]. 重庆大学学报, 2021, 44(7): 108-114.
Ma Chuang, Wang Yao, Li Linfeng. A water quality prediction model based on genetic algorithm and SVM [J]. Journal of Chongqing University, 2021, 44(7): 108-114.
[26] 杨旭, 纪玉波, 田雪. 基于遗传算法的SVM参数选取[J]. 辽宁石油化工大学学报, 2004, 24(1): 54-58.
Yang Xu, Ji Yubo, Tian Xue. Parameters selection of SVM Based on genetic algorithm [J]. Journal of Liaoning Petrochemical University, 2004, 24(1): 54-58.
[27] 张丽英, 鲜兴明, 杨杰, 等. 烘烤过程中烟叶颜色特征参数与色素含量的关系[J]. 烟草科技, 2013(8): 85-90.
Zhang Liying, Xian Xingming, Yang Jie, et al. Relationship between pigment concentration and color attributive parameters of tobacco leaves during fluecuring [J]. Tobacco Science & Technology, 2013(8): 85-90.
[28] 焦祉衡. 低照度多光谱彩色成像中色彩还原技术研究[D]. 长春: 长春理工大学, 2021.
Jiao Zhiheng. Research on color reduction technology in low illumination multispectral color imaging [D]. Changchun: Changchun University of Science and Technology, 2021.
[29] 李瑶. 低照度下可见光与近红外图像真彩色复原研究[D]. 昆明: 云南师范大学, 2021.
Li Yao. Research on true color restoration of visible and near infrared image under low illumination [D]. Kunming: Yunnan Normal University, 2021.
[30] 段史江. 图像处理技术在烤烟烘烤过程中的应用研究[D]. 郑州: 河南农业大学, 2012.
Duan Shijiang. Research on application of image processing technology during curing process of fluecured tobacco [D]. Zhengzhou: Henan Agricultural University, 2012.
[31] 谢滨瑶. 基于图像处理的烟叶成熟度鉴别方法[D]. 重庆: 西南大学, 2020.
Xie Binyao. Identification methods of tobacco maturity based on image processing [D]. Chongqing: Southwest University, 2020.
[32] 庄珍珍. 基于机器视觉的烟叶自动分级方法研究[D]. 重庆: 西南大学, 2016.
Zhuang Zhenzhen. Method for automatic grading of tobacco based on machine vision [D]. Chongqing: Southwest University, 2016.
[33] Yin Y, Xiao Y, Yu H. An image selection method for tobacco leave grading based on image information [J]. Engineering in Agriculture, Environment and Food, 2015, 8(3): 148-154.
[34] Saadatfar H, Khosravi S, Joloudari J H, et al. A new Knearest neighbors classifier for big data based on efficient data pruning [J]. Mathematics, 2020, 8(2): 286.
|