[1]
相俊红. 农作物秸秆综合利用机械化技术推广研究[D]. 北京: 中国农业大学, 2005.
[2]
李录久, 吴萍萍, 蒋友坤, 等. 玉米秸秆还田对小麦生长和土壤水分含量的影响[J]. 安徽农业科学, 2017, 45(24): 112-113, 117.
Li Lujiu, Wu Pingping, Jiang Youkun, et al. Response of wheat growth and soil moisture content to corn straw returned to field [J]. Journal of Anhui Agricultural Sciences, 2017, 45(24): 112-113, 117.
[3]
李伟, 蔺树生, 谭豫之, 等. 作物秸秆综合利用的创新技术[J]. 农业工程学报, 2000(1): 14-17.
Li Wei, Lin Shusheng, Tan Yuzhi, et al. Innovated techniques on comprehensive utilization of crop straw [J]. Transactions of the Chinese Society of Agricultural Engineering, 2001(1): 14-17.
[4]
Cundall P A, Strack O D L. A discrete numerical model for granular assemblies [J]. Geotechnique, 1979, 29: 47-65.
[5]
Adajar J B, Alfaro M, Chen Y, et al. Calibration of discrete element parameters of crop residues and their interfaces with soil [J]. Computers and Electronics in Agriculture, 2021, 188: 106349.
[6]
Schramm M, Tekeste M Z. Wheat straw direct shear simulation using discrete element method of fibrous bonded model [J]. Biosystems Engineering, 2022, 213: 1-12.
[7]
Fang M, Yu Z L, Zhang W J, et al. Friction coefficient calibration of corn stalk particle mixtures using PlackettBurman design and response surface methodology [J]. Powder Technology, 2022, 396: 731-742.
[8]
张涛, 刘飞, 赵满全, 等. 玉米秸秆接触物理参数测定与离散元仿真标定[J]. 中国农业大学学报, 2018, 23(4): 120-127.
Zhang Tao, Liu Fei, Zhao Manquan, et al. Determination of corn stalk contact parameters and calibration of discrete element method simulation [J]. Journal of China Agricultural University, 2018, 23(4): 120-127.
[9]
朱惠斌, 钱诚, 白丽珍, 等. 基于PlackettBurman试验设计与响应面法优化玉米秸秆离散元模型[J]. 中国农业大学学报, 2021, 26(12): 221-231.
Zhu Huibin, Qian Cheng, Bai Lizhen, et al. Optimization of discrete element model of corn stalk based on PlackettBurman design and response surface methodology [J]. Journal of China Agricultural University, 2021, 26(12): 221-231.
[10]
Wang Xuezhen, Zhang Sen, Pan Hongbo, et al. Effect of soil particle size on soilsubsoiler interactions using the discrete element method simulations [J]. Biosystems Engineering, 2019, 182: 138-150.
[11]
Xu T, Yu J, Yu Y, et al. A modelling and verification approach for soybean seed particles using the discrete element method [J]. Advanced Powder Technology, 2018, 29(12): 3274-3290.
[12]
Xia Y D, Klinger J, Bhattacharjee T, et al. The elastoplastic flexural behaviour of corn stalks [J]. Biosystems Engineering, 2022, 216: 218-228.
[13]
Qin T D, Li Y M, Chen J, et al. Experimental study on flexural mechanical properties of corn stalks [C]. 2011 International Conference on New Technology of Agricultural, IEEE, 2011: 130-134.
[14]
Leblicq T, Smeets B, Ramon H, et al. A discrete element approach for modelling the compression of crop stems [J]. Computers and Electronics in Agriculture, 2016, 123: 80-88.
[15]
Ghodki B M, Patel M, Namdeo R, et al. Calibration of discrete element model parameters: Soybeans [J]. Computational Particle Mechanics, 2019, 6: 3-10.
[16]
刘凡一, 张舰, 李博, 等. 基于堆积试验的小麦离散元参数分析及标定[J]. 农业工程学报, 2016, 32(12): 247-253.
Liu Fanyi, Zhang Jian, Li Bo, et al. Calibration of parameters of wheat required in discrete element method simulation based on repose angle of particle heap [J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(12): 247-253.
[17]
Lenaerts B, Aertsen T, Tijskens E, et al. Simulation of grainstraw separation by Discrete Element Modeling with bendable straw particles [J]. Computers and Electronics in Agriculture, 2014, 101: 24-33.
[18]
Gardiner W P, Gettinby G. Response surface methods [J]. Experimental Design Techniques in Statistical Practice, 1998: 322-354.
[19]
Li X Y, Du Y F, Guo J L, et al. Simulation, and test of a new threshing cylinder for high moisture content corn [J]. Applied SciencesBasel, 2020, 10(14): 4925.
[20]
Bezerra M A, Santelli R E, Oliveira E P, et al. Response surface methodology (RSM) as a tool for optimization in analytical chemistry [J]. Talanta, 2008, 76(5): 965-977.
|