[1] 何登旭, 李艳芳, 刘向虎, 等. 基于泛函网络的非线性回归预测模型及学习算法[J]. 计算机工程与应用, 2008, 44(24): 74-77.
He Dengxu, Li Yanfang, Liu Xianghu, et al. Nonlinear regression forecast model based on functional networks and learning algorithm [J]. Computer Engineering and Applications, 2008, 44(24): 74-77.
[2] 李之红, 申天宇, 文琰杰, 等. 基于混合机器学习框架的网约车订单需求预测与异常点识别[J]. 交通信息与安全, 2023, 41(3): 157-165, 174.
Li Zhihong, Shen Tianyu, Wen Yanjie, et al. Order demand prediction and anomalypoint identification for online carhailing orders based on hybrid machine learning framework [J]. Journal of Transport Information and Safety, 2023, 41(3): 157-165, 174.
[3] Maulud D, Abdulazeez A M. A review on linear regression comprehensive in machine learning [J]. Journal of Applied Science and Technology Trends, 2020, 1(4): 140-147.
[4] 吴庚奇, 牛东晓, 耿世平, 等. 多价值链视角下基于深度学习算法的制造企业产品需求预测[J]. 科学技术与工程, 2021, 21(31): 13413-13420.
Wu Gengqi, Niu Dongxiao, Geng Shiping, et al. Product demand forecasting of manufacturing enterprises based on deep learning algorithm from the perspective of multivalue chains [J]. Science Technology and Engineering, 2021, 21(31): 13413-13420.
[5] 武慧荣, 陈少阳, 崔淑华. 基于GM(1,1)-MLP神经网络模型的大宗货物运输需求预测[J]. 公路交通科技, 2023, 40(10): 233-240.
Wu Huirong, Chen Shaoyang, Cui Shuhua. Transportation demand forecast of bulk cargo based on GM(1,1)-MLP neural network model [J]. Journal of Highway and Transportation Research and Development, 2023, 40(10): 233-240.
[6] 崔凯, 郭宇, 钱伟伟, 等. 基于Group-BiLSTM-LightGBM的物料配送需求量预测[J]. 组合机床与自动化加工术, 2022(8): 164-168.
Cui Kai, Guo Yu, Qian Weiwei, et al. Material distribution demand forecasting method based on Group-BiLSTM-LightGBM [J]. Modular Machine Tool & Automatic Manufacturing Technique, 2022(8): 164-168.
[7] 王海程, 马纪颖, 张苑媛, 等. 融合时序关联动态图与常微分方程的区域间出租车需求预测[J]. 计算机应用研究, 2024, 41(3): 794-798, 860.
Wang Haicheng, Ma Jiying, Zhang Yuanyuan, et al. Interregional taxi demand forecasting based on time series correlation dynamic graph and ordinary differential equation [J]. Application Research of Computers, 2024, 41(3): 794-798, 860.
[8] 黄国兴, 曹先怀, 钱晓飞. 一种基于随机森林的备件预测模型研究[J]. 运筹与管理, 2021, 30(10): 165-168.
Huang Guoxing, Cao Xianhuai, Qian Xiaofei. Research on spare parts prediction model based on random forest [J]. Operations Research and Management Science, 2021, 30(10): 165-168.
[9] 付维方, 穆彩虹, 刘英杰. 基于机器学习方法的航空消耗件需求自适应预测[J]. 科学技术与工程, 2022, 22(11): 4609-4617.
Fu Weifang, Mu Caihong, Liu Yingjie. Adaptive demand prediction of aviation consumable spare parts based on machine learning method [J]. Science Technology and Engineering, 2022, 22(11): 4609-4617.
[10] 张舜, 杨欣, 魏津瑜. 基于预防性维修的农机备件需求预测问题研究[J]. 中国农机化学报, 2020, 41(6): 225-230.
Zhang Shun, Yang Xin, Wei Jinyu. Research on forecasting of agricultural machinery spare parts demand based on preventive maintenance [J]. Journal of Chinese Agricultural Mechanization, 2020, 41(6): 225-230.
[11] 李琼, 陈佳, 徐斌. 多产品相互制约条件下的制造业产品需求预测研究[J]. 计算机应用与软件, 2021, 38(3): 59-69.
Li Qiong, Chen Jia, Xu Bin. Demand forecasting of manufacturing products under the condition of multi product mutual restriction [J]. Computer Applications and Software, 2021, 38(3): 59-69.
[12] Chen X, Wang T, Liang W. General aircraft material demand forecast based on PSO-BP neural network [J]. International Journal of Control and Automation, 2016, 9(5): 407-418.
[13] 李洁, 彭其渊, 杨宇翔. 基于SARIMA模型的广珠城际铁路客流量预测[J]. 西南交通大学学报, 2020, 55(1): 41-51.
LiJie, Peng Qiyuan, Yang Yuxiang. Passenger flow prediction for GuangzhouZhuhai intercity railway based on SARIMA model [J]. Journal of Southwest Jiaotong University, 2020, 55(1): 41-51.
[14] Hochreiter S, Schmidhuber J. Long shortterm memory [J].Neural Computation, 1997, 9(8): 1735-1780.
[15] Yu Y, Si X, Hu C, et al. A review of recurrent neural networks: LSTM cells and network architectures [J]. Neural Computation, 2019, 31(7): 1235-1270.
[16] 冯建英, 穆维松, 张领先, 等. 基于消费者购买意愿的农机市场需求分析[J]. 商业研究, 2008(2): 191-194.
Feng Jianying, Mu Weisong, Zhang Lingxian, et al. An empirical study on consumers purchase intention in agricultural machinery Market [J]. Commercial Research, 2008(2): 191-194.
[17] 陈旭, 杨印生, 魏思琳. 基于向后逐步回归模型的我国农机需求特征及影响因素研究[J]. 数理统计与管理, 2017, 36(5): 774-782.
Chen Xu, Yang Yinsheng, Wei Silin. A study on characteristics and influencing factors of agricultural machinery demand in China based on backward stepwise regression model [J]. Journal of Applied Statistics and Management, 2017, 36(5): 774-782.
[18] 张标, 张领先, 傅泽田, 等. 农户农机需求及购买行为分析——基于18省的微观调查数据实证[J]. 中国农业大学学报, 2017, 22(11): 208-223.
Zhang Biao, Zhang Lingxian, Fu Zetian, et al. Analysis on farmers requirements for agricultural machinery and purchasing behavior: Based on the survey data of 18 provinces [J]. Journal of China Agricultural University, 2017, 22(11): 208-223.
[19] Kuiper R. AICtype theorybased model selection for structural equation models [J]. Structural Equation Modeling, 2022, 29(1): 151-158.
[20] Torres M E, Colominas M A, Schlotthauer G, et al. A complete ensemble empirical mode decomposition with adaptive noise [C]. Proceedings of 2011 IEEE International Conference on Acoustics, Speech and Signal Processing, IEEE, 2011: 4144-4147.
[21] 韩惠, 于巧, 祝义. 超参数优化对跨版本缺陷预测影响的实证研究[J]. 计算机科学与探索, 2023, 17(12):3052-3064.
Han Hui, Yu Qiao, Zhu Yi. Impact of hyperparameter optimization on crossversion defect prediction: An empirical study [J]. Journal of Frontiers of Computer Science and Technology, 2023, 17(12): 3052-3064.
|