English

中国农机化学报

中国农机化学报 ›› 2022, Vol. 43 ›› Issue (7): 173-178.DOI: 10.13733/j.jcam.issn.20955553.2022.07.025

• 农业智能化研究 • 上一篇    下一篇

基于MPC的插秧机路径跟踪控制算法研究

王玉亮1, 2,李汉卿1, 2,陈兆英1, 2,石绍军1, 2,陈国防1, 2,王金星1, 2   

  1. 1. 山东农业大学机械与电子工程学院,山东泰安,271018; 
    2. 山东省园艺机械与装备重点实验室,山东泰安,271018
  • 出版日期:2022-07-15 发布日期:2022-06-27
  • 基金资助:
    山东省重点研发计划项目(2017GNC12109);山东省高等学校科技计划项目(J17KA146);“十三五”国家重点研发计划子课题(2018YFD0300606—03)

Research on path tracking control  of rice transplanter based on MPC algorithm

Wang Yuliang, Li Hanqing, Chen Zhaoying, Shi Shaojun, Chen Guofang, Wang Jinxing.   

  • Online:2022-07-15 Published:2022-06-27

摘要: 针对国内自动驾驶插秧机路径跟踪精度不高的现象,提出一种基于线性时变模型预测控制的路径跟踪方法。将建立的非线性插秧机运动学模型进行线性化和离散化处理,并基于此模型进行模型预测路径跟踪控制;建立以控制增量为状态量的目标函数;考虑系统控制量和控制增量的约束条件,将目标函数求解转为带约束的二次规划问题;采用内点法进行求解,将所得控制序列第一个元素作用于系统,并且不断重复以上过程实现最优控制。在MATLAB/Simulink环境下,搭建上述模型预测控制器系统仿真,并与路径跟踪效果良好的Stanley控制算法对比,结果表明,上述模型预测控制器优于Stanley控制算法。采用卫星信号接收机、电动方向盘和转角传感器,改造井关PZ60型插秧机,搭建插秧机自动驾驶试验平台,进行田间试验,试验结果表明,基于线性时变模型预测控制器能够使自动驾驶插秧机车速1 m/s时,有效进行路径跟踪,直线段跟踪误差最大2.02 cm,满足插秧机自动驾驶路径跟踪精度要求。

关键词: 插秧机, 自动驾驶, 模型预测控制, MATLAB/Simulink, 路径跟踪

Abstract: Aiming at the phenomenon that the path tracking accuracy of the domestic automatic driving rice transplanter is not high, a path tracking method based on linear timevarying model predictive control is proposed. It is linearized and discretized the established nonlinear rice transplanter kinematics model, and performed model prediction path tracking control based on this model. It is established an objective function with the control increment as the state quantity. Considering the system control quantity and control increment constraint conditions, the objective function is converted into a constrained quadratic programming problem. The interior point method is used to solve the problem, the first element of the obtained control sequence is applied to the system, and the above process is repeated to achieve optimal control. In the MATLAB/Simulink environment, the model predictive control system simulation is built and compared with the Stanley control algorithm with a good path tracking effect. The results show that the predictive model controller is better than the Stanley control algorithm. Using a satellite signal receiver, electric steering wheel, and angle sensor to transform the Jingguan PZ60 rice transplanter, an unmanned test platform for the rice transplanter is built, and field tests are conducted. The test results show that the predictive controller based on the linear timevarying model can make the automatic driving rice transplanter carry out path tracking effectively when the speed is 1 m/s. The tracking error of the straight line segment is up to 202 cm, which meets the accuracy requirements of the automatic driving path tracking of the rice transplanter.

Key words: rice transplanter, automatic driving, model predictive control, MATLAB/Simulink, path tracking

中图分类号: