[1] 付豪, 赵学观, 翟长远,等. 基于深度学习的杂草识别方法研究进展[J]. 中国农机化学报, 2023, 44(5): 198-207.
Fu Hao, Zhao Xueguan, Zhai Changyuan, et al. Research progress on weed recognition method based on deep learning technology [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(5): 198-207.
[2] 王宇博, 马廷淮, 陈光明. 基于改进YOLOv5算法的农田杂草检测[J]. 中国农机化学报, 2023, 44(4): 167-173.
Wang Yubo, Ma Tinghuai, Chen Guangming. Weeds detection in farmland based on a modified YOLOv5 algorithm [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(4): 167-173.
[3] Wang A, Zhang W, Wei X. A review on weed detection using ground-based machine vision and image processing techniques [J]. Computers and Electronics in Agriculture, 2019, 158.
[4] 王宝聚, 兰玉彬, 陈蒙蒙, 等. 机器学习在无人农场中的应用现状与展望[J]. 中国农机化学报, 2021, 42(10): 186-192, 217.
Wang Baoju, Lan Yubin, Chen Mengmeng, et al. Application status and prospect of machine learning in unmanned farm [J]. Journal of Chinese Agricultural Mechanization, 2021, 42(10): 186-192, 217.
[5] 李金阳, 张伟, 康烨, 等. 基于无人机遥感技术的大豆苗数估算研究[J]. 中国农机化学报, 2022, 43(4): 83-89.
Li Jinyang, Zhang Wei, Kang Ye, et al. Research on soybean seedling number estimation based on UAV remote sensing technology [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(4): 83-89.
[6] 沈宝国, 陈树人, 尹建军, 等. 基于颜色特征的棉田绿色杂草图像识别方法[J]. 农业工程学报, 2009, 25(6): 163-167.
Shen Baoguo, Chen Shuren, Yin Jianjun, et al.Image recognition of green weeds in cotton fields based on color feature [J]. Transactions of the Chinese Society of Agricultural Engineering, 2009, 25(6): 163-167.
[7] 吴兰兰, 徐恺, 熊利荣. 基于视觉注意模型的苗期油菜田间杂草检测[J]. 华中农业大学学报, 2018, 37(2): 96-102.
Wu Lanlan, Xu Kai, Xiong Lirong. Detecting weed in seedling rapeseed oil field based on visual-attention model [J]. Journal of Huazhong Agricultural University, 2018, 37(2): 96-102.
[8] 王二锐. 基于深度学习的前胡除草机部件设计与试验[D].合肥:安徽农业大学, 2022.
[9] 尚文卿, 齐红波. 基于改进Faster R—CNN与迁移学习的农田杂草识别算法[J]. 中国农机化学报, 2022, 43(10): 176-182.
Shang Wenqing, Qi Hongbo. Identification algorithm of field weeds based on improved Faster R—CNN and transfer learning [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(10): 176-182.
[10] Ren S, He K, Girshick R, et al. Faster R—CNN: Towards real-time object detection with region proposal networks [J]. IEEE Transactions on Pattern Analysis &Machine Intelligence, 2017, 39(6): 1137-1149.
[11] 李春明, 逯杉婷, 远松灵, 等. 基于Faster R—CNN的除草机器人杂草识别算法[J]. 中国农机化学报, 2019, 40(12): 171-176.
Li Chunming, Lu Shanting, Yuan Songling, et al. Weed identification algorithm of weeding robot based on Faster R—CNN [J]. Journal of Chinese Agricultural Mechanization, 2019, 40(12): 171-176.
[12] 李茂晖, 吴传平, 鲍艳, 等. 论YOLO算法在机器视觉中应用原理[J]. 教育现代化, 2018, 5(41): 174-176.
[13] Bochkovskiy A, Wang C, Liao H. YOLOv4: Optimal speed and accuracy of object detection [J]. arXiv preprint arXiv: 2004.10934, 2020.
[14] 王贵参, 杨承林, 蒲佳佳, 等. 基于改进的Vision Transformer杂草生长周期识别方法研究[J]. 长春工业大学学报, 2022, 43(6): 712-718.
[15] 东辉, 陈鑫凯, 孙浩, 等. 基于改进YOLOv4和图像处理的蔬菜田杂草检测[J]. 图学学报, 2022, 43(4): 559-569.
Dong Hui, Chen Xinkai, Sun Hao, et al. Weed detection in vegetable field based on improved YOLOv4 and image processing [J]. Journal of Graphics, 2022, 43(4): 559-569.
[16] 张伟康, 孙浩, 陈鑫凯, 等. 基于改进YOLOv5的智能除草机器人蔬菜苗田杂草检测研究[J]. 图学学报, 2023, 44(2): 346-356.
Zhang Weikang, Sun Hao, Chen Xinkai, et al. Research on weed detection in vegetable seedling fields based on the improved YOLOv5 intelligent weeding robot [J]. Journal of Graphics, 2023, 44(5): 346-356.
|