[1] 李东丹.计算机图像处理的应用与发展[J].现代工业经济和信息化, 2022, 12(5):160-162.〖JP2〗Li Dongdan. Application and development of computer image processing [J]. Modern Industrial Economics and Informationization, 2022, 12(5): 160-162.〖JP〗
[2] Danilo F. Pereira, et al. Machine vision to identify broiler breeder behavior [J]. Computers and Electronics in Agriculture, 2013, 99: 194-199.
[3] 郑双阳,王琳琳. 基于机器视觉对高阶直立式鸡笼内蛋鸡的监视系统的开发[J]. 吉林农业大学学报, 2009, 31(4): 476-480.Zheng Shuangyang, Wang Linlin. Development of monitoring system for laying hens in highorder vertical cages based on machine vision [J].Journal of Jilin Agricultural University, 2009, 31(4): 476-480.
[4] 李娜,任昊宇,任振辉.基于深度学习的群养鸡只行为监测方法研究[J].河北农业大学学报,2021, 44(2):117-121.Li Na, Ren Haoyu,Ren Zhenhui, et al. Research on group chicken behavior monitoring method based on deep learning [J]. Journal of Hebei Agricultural University, 2021, 44(2):117-121.
[5] 毕敏娜,张铁民,庄晓霖,等.基于鸡头特征的病鸡识别方法研究[J]. 农业机械学报, 2018, 49(1): 51-57.
Bi Minna, Zhang Tiemin,Zhuang Xiaolin, et al. Research on the identification method of sick chickens based on chicken head characteristics [J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(1): 51-57.
[6] Fang Cheng, Zhang Tiemin, Zheng Haikun, et al. Pose estimation and behavior classification of broiler chickens based on deep neural networks [J]. Computers and Electronics in Agriculture, 2021, 180: 105863.
[7] Liu Hungwei, Chen Chiahung, Tsai Yaochuan, et al. Identifying images of dead chickens with a chicken removal system integrated with a deep learning algorithm [J]. Sensors, 2021, 21(11): 3579.
[8] Cheng Fang, Huang Junduan, Cuan Kaixuan, et al. Comparative study on poultry target tracking algorithms based on a deep regression network [J]. Biosystems Engineering, 2020, 190: 176-183.
[9] Neethirajan S. Automated tracking systems for the assessment of farmed poultry [J]. Animals, 2022, 12(3): 232.
[10] Yang J, Gao M, Li Z, et al. Track anything: Segment anything meets videos [J]. arXiv preprint arXiv:230411968,2023.
[11] He K, Gkioxari G, Dollar P, et al. Mask RCNN [C]. Proceedings of the IEEE International Conference on Computer Vision, 2017: 2961-2969.
[12] Bradski G. The OpenCV library [J]. Dr.Dobbs Journal: Software Tools for the Professional Programmer, 2000, 25(11): 120-123.
[13] Dai Z, Yang Z, Yang Y, et al. TransformerXL: Attentive language models beyond a fixedlength context [J]. arXiv preprint arXiv: 190102860, 2019.
[14] Sun P, Cao J, Jiang Y, et al. Transtrack: Multiple object tracking with transformer [J]. arXiv preprint arXiv:201215460, 2020.
[15] Xu Y, Ban Y, Delorme G, et al. Transformers with dense queries for multipleobject tracking [J]. arXiv preprint arXiv:210315145, 2021.
[16] 伍瀚,聂佳浩,张照娓,等.基于深度学习的视觉多目标跟踪研究综述[J].计算机科学,2023,50(4):77-87.
Wu Han, Nie Jiahao, Zhang Zhaowei, et al. A review of visual multitarget tracking based on deep learning [J]. Computer Science, 2023, 50(4): 77-87.
[17] Kirillov A, Mintun E, Ravi N, et al. Segment anything [J]. arXiv preprint arXiv: 230402643, 2023.
[18] Cheng H K, Schwing A G. XMem: Longterm video object segmentation with an AtkinsonShiffrin memory model [C]. Proceedings, Part XXVIII Cham: Springer Nature Switzerland, 2022: 640-658.
[19] Caelles S, Maninis K K, PontTuset J, et al. Oneshot video object segmentation [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017:221-230.
[20] 肖林芳.基于双目视觉的笼养蛋鸡饮水采食行为感知方法研究[D]. 杭州:浙江大学, 2018.Xiao Linfang. Research on perception method of drinking and feeding behavior of caged laying hens based on binocular vision [D]. Hangzhou: Zhejiang University, 2018.
|