[ 1 ] 涂淑琴, 刘晓龙, 梁云, 等. 基于改进DeepSORT的群养生猪行为识别与跟踪方法[J]. 农业机械学报, 2022, 53(8): 345-352.
Tu Shuqin, Liu Xiaolong, Liang Yun, et al. Behavior recognition and tracking method of group‑housed pigs based on improved DeepSORT algorithm [J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(8): 345-352.
[ 2 ] 张丽雯, 周昊, 朱启兵. 基于PigsTrack跟踪器的群养生猪多目标跟踪[J]. 农业工程学报, 2023, 39(16): 181-190.
Zhang Liwen, Zhou Hao, Zhu Qibing. Multi‑target tracking of group‑raised pigs based on PigsTrack tracker [J]. Transactions of the Chinese Society of Agricultural Engineering, 2023, 39(16): 181-190.
[ 3 ] Shu H, Bindelle J, Guo L, et al. Determining the onset of heat stress in a dairy herd based on automated behaviour recognition [J]. Biosystems Engineering, 2023, 226: 238-251.
[ 4 ] Williams M, Lai S Z. Classification of dairy cow excretory events using a tail‑mounted accelerometer [J]. Computers and Electronics in Agriculture, 2022, 199: 107187.
[ 5 ] Zambelis A, Wolfe T, Vasseur E. Technical note: Validation of an ear‑tag accelerometer to identify feeding and activity behaviors of tiestall‑housed dairy cattle [J]. Journal of Dairy Science, 2019, 102(5): 4536-4540.
[ 6 ] Bergamini L, Pini S, Simoni A, et al. Extracting accurate long‑term behavior changes from a large pig dataset [C]. 16th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, VISIGRAPP 2021. SciTePress, 2021: 524-533.
[ 7 ] Bewley A, Ge Z, Ott L, et al. Simple online and realtime tracking [C]. 2016 IEEE International Conference on Image Processing (ICIP). IEEE, 2016: 3464-3468.
[ 8 ] Wojke N, Bewley A, Paulus D. Simple online and realtime tracking with a deep association metric [C]. 2017 IEEE International Conference on Image Processing (ICIP). IEEE, 2017: 3645-3649.
[ 9 ] Sun Z, Chen J, Mukherjee M, et al. Online multiple object tracking based on fusing global and partial features [J]. Neurocomputing, 2022, 470: 190-203.
[10] 张宏鸣, 汪润, 董佩杰, 等. 基于DeepSORT算法的肉牛多目标跟踪方法[J]. 农业机械学报, 2021, 52(4): 248-256.
Zhang Hongming, Wang Run, Dong Peijie, et al. Beef cattle multi‑target tracking based on DeepSORT algorithm [J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(4): 248-256.
[11] 张伟, 沈明霞, 刘龙申, 等. 基于CenterNet 搭配优化DeepSORT算法的断奶仔猪目标跟踪方法研究[J]. 南京农业大学学报, 2021, 44(5): 973-981.
Zhang Wei, Shen Mingxia, Liu Longshen, et al. Research on weaned piglet target tracking method based on CenterNet collocation optimized DeepSORT algorithm [J]. Journal of Nanjing Agricultural University, 2021, 44(5): 973-981.
[12] Wang Z, Zheng L, Liu Y, et al. Towards real‑time multi‑object tracking [C]. European Conference on Computer Vision. Cham: Springer International Publishing, 2020: 107-122.
[13] Zhang Y, Wang C, Wang X, et al. Fairmot: On the fairness of detection and re‑identification in multiple object tracking [J]. International Journal of Computer Vision, 2021, 129: 3069-3087.
[14] Zhou X, Koltun V, Krähenbühl P. Tracking objects as points [C]. European Conference on Computer Vision. Cham: Springer International Publishing, 2020: 474-490.
[15] 涂淑琴, 黄磊, 梁云, 等. 基于JDE模型的群养生猪多目标跟踪[J]. 农业工程学报, 2022, 38(17): 186-195.
Tu Shuqin, Huang Lei, Liang Yun, et al. Multiple object tracking of group‑housed pigs based on JDE model [J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(17): 186-195.
[16] Guo Q, Sun Y, Orsini C, et al. Enhanced camera‑based individual pig detection and tracking for smart pig farms [J]. Computers and Electronics in Agriculture, 2023, 211: 108009.
[17] Zhang Y, Wang C, Wang X, et al. Fairmot: On the fairness of detection and re‑identification in multiple object tracking [J]. International Journal of Computer Vision, 2021, 129: 3069-3087.
[18] 席一帆, 何立明, 吕悦. 基于改进Fairmot框架的多目标跟踪[J]. 液晶与显示, 2022, 37(6): 777-785.
Xi Yifan, He Liming, Lü Yue. Multi‑object tracking based on the improved Fairmot framework [J]. Chinese Journal of Liquid Crystals and Displays, 2022, 37(6): 777-785.
[19] 张红颖, 贺鹏艺, 彭晓雯. 基于改进高分辨率神经网络的多目标行人跟踪[J]. 光学精密工程, 2023, 31(6): 860-871.
Zhang Hongying, He Pengyi, Peng Xiaowen. Multi‑object pedestrian tracking method based on improved high resolution neural network [J]. Optics and Precision Engineering, 2023, 31(6): 860-871.
[20] 孙卫红, 于思佳, 梁曼, 等. 基于改进FairMOT模型的多类别蚕茧跟踪算法[J]. 蚕业科学, 2023, 49(4): 340-348.
Sun Weihong, Yu Sijia, Liang Man, et al. Multi‑category cocoon tracking algorithm based on improved FairMOT model [J]. Acta Sericologica Sinica, 2023, 49(4): 340-348.
[21] 康盛, 范益群, 李铮伟. 基于FairMOT的隧道交通车辆检测及追踪系统研究[J]. 电气自动化, 2022, 44(5): 75-77.
Kang Sheng, Fan Yiqun, Li Zhengwei. Research of vehicle detection and multi‑object tracking in tunnel traffic systembased on FairMOT [J]. Electrical Automation, 2022, 44(5): 75-77.
[22] 夏雪, 柴秀娟, 张凝, 等. 用于边缘计算设备的果树挂果量轻量化估测模型[J]. 智慧农业(中英文), 2023, 5(2): 1‑12.
Xia Xue, Chai Xiujuan, Zhang Ning, et al. A lightweight fruit load estimation model for edge computing equipment [J]. Smart Agriculture, 2023, 5(2): 1-12.
[23] 胡昊, 史天运, 杨文. 基于改进FairMOT的铁路周界入侵检测方法[J]. 中国铁道科学, 2023, 44(5): 222-232.
Hu Hao, Shi Tianyun, Yang Wen. Railway perimeter intrusion detection method based on improved FairMOT [J]. China Railway Science, 2023, 44(5): 222-232.
[24] Bergamini L, Pini S, Simoni A, et al. Extracting accurate long‑term behavior changes from a large pig dataset [C]. 16th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, VISIGRAPP 2021. SciTePress, 2021: 524-533.
[25] Ouyang D, He S, Zhang G, et al. Efficient multi‑scale attention Module with cross‑spatial learning [C]. ICASSP 2023‑2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2023: 1-5.
[26] Ristani E, Tomasi C. Features for multi‑target multi‑camera tracking and re‑identification [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 6036-6046.
[27] 王俊, 王鹏, 李晓艳, 等. 融合多阶语义增强的JDE多目标跟踪算法[J].西北工业大学学报, 2022, 40(4): 944-952.
Wang Jun, Wang Peng, Li Xiaoyan, et al. JDE multi‑object tracking algorithm integrating multi‑level semantic enhancement [J]. Journal of Northwestern Polytechnical University, 2022, 40(4): 944-952.
[28] Zhang Y, Sun P, Jiang Y, et al. Bytetrack: Multi‑object tracking by associating every detection box [C]. European Conference on Computer Vision. Cham: Springer Nature Switzerland, 2022: 1-21.
[29] Li F, Chen Y, Hu M, et al. Helmet‑wearing tracking detection based on StrongSORT [J]. Sensors, 2023, 23(3): 1682.
[30] Kalyanaraman A, Griffiths E, Whitehouse K. Transtrack: Tracking multiple targets by sensing their zone transitions [C]. 2016 International Conference on Distributed Computing in Sensor Systems (DCOSS). IEEE, 2016: 59-66.
|