[1] 赵春江. 智慧农业发展现状及战略目标研究[J]. 智慧农业, 2019, 1(1): 1-7.
Zhao Chunjiang. Stateoftheart and recommended developmental strategic objectives of smart agriculture [J]. Smart Agriculture, 2019, 1(1): 1-7.
[2] 赵新, 罗锡文, Wells L G. 土壤阻力连续测试设备研制[J]. 农业工程学报, 2009, 25(2): 67-71.
Zhao Xin, Luo Xiwen, Wells L G. Development of continuous measurement system for soil resistance [J]. Transactions of the Chinese Society of Agricultural Engineering, 2009, 25(2): 67-71.
[3] Sun Y, Ma D, Schulze L P, et al. Onthego measurement of soil water content and mechanical resistance by a combined horizontal penetrometer [J]. Soil and Tillage Research, 2005, 86(2): 209-217.
[4] 陶飞, 刘蔚然, 刘检华, 等. 数字孪生及其应用探索[J]. 计算机集成制造系统, 2018, 24(1): 1-18.
Tao Fei, Liu Weiran, Liu Jianhua, et al. Digital twin and its potential application exploration [J]. Computer Integrated Manufacturing Systems, 2018, 24(1): 1-18.
[5] 陈媛媛, 游炯, 幸泽峰, 等. 世界主要国家精准农业发展概况及对中国的发展建议[J]. 农业工程学报, 2021, 37(11): 315-324.
Chen Yuanyuan, You Jiong, Xing Zefeng, et al. Review of precision agriculture development situations in the main countries in the world and suggestions for China [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(11): 315-324.
[6] 郭永田. 充分利用信息技术推动现代农业发展——澳大利亚农业信息化及其对我国的启示[J]. 华中农业大学学报(社会科学版), 2016(2): 1-8.
Guo Yongtian. Make full use of information technology to promote development of modern agriculture: Australian agriculture informatization and its enlightenment to China [J]. Journal of Huazhong Agricultural University (Social Sciences Edition), 2016(2): 1-8.
[7] 宋洪远. 智慧农业发展的状况、面临的问题及对策建议[J]. 人民论坛·学术前沿, 2020(24): 62-69.
Song Hongyuan. The status and problems of smart agriculture development and responses [J]. Frontiers, 2020(24): 62-69.
[8] 王云琦, 王玉杰, 张洪江, 等. 重庆缙云山不同土地利用类型土壤结构对土壤抗剪性能的影响[J]. 农业工程学报, 2006(3): 40-45.
Wang Yunqi, Wang Yujie, Zhang Hongjiang, et al. Impacts of soil structure on shearresistantance of soil under different land uses in Jinyun Mountain of Chongqing City [J]. Transactions of the Chinese Society of Agricultural Engineering, 2006(3): 40-45.
[9] 孙博瑞, 孙三民, 蒋敏, 等. 基于LSTM神经网络的智能灌溉系统设计与试验[J]. 中国农机化学报, 2022, 43(4): 116-123.
Sun Borui, Sun Sanmin, Jiang Min, et al. Design and test of intelligent irrigation system based on LSTM neural network [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(4): 116-123.
[10] 朱龙图, 李名伟, 夏晓蒙, 等. 基于人工嗅觉系统的土壤有机质检测方法研究[J]. 农业机械学报, 2020, 51(3): 171-179.
Zhu Longtu, Li Mingwei, Xia Xiaomeng, et al. Soil organic matter detection method based on artificial olfactory system [J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(3): 171-179.
[11] 刘坤宇, 苏宏杰, 李飞宇, 等. 基于响应曲面法的土壤离散元模型的参数标定研究[J]. 中国农机化学报, 2021, 42(9): 143-149.
Liu Kunyu, Su Hongjie, Li Feiyu, et al. Research on parameter calibration of soil discrete element model based on response surface method [J]. Journal of Chinese Agricultural Mechanization, 2021, 42(9): 143-149.
[12] 张超, 赵智达, 廖青, 等. 基于SPH法的水田筑梗机取土弯刀旋切性能优化研究[J]. 中国农机化学报, 2020, 41(5): 6-11.
Zhang Chao, Zhao Zhida, Liao Qin, et al. Optimization for rotary cutting and soil collection performance of the single blade of paddy ridger based on SPH [J]. Journal of Chinese Agricultural Mechanization, 2020, 41(5): 6-11.
[13] 周浩, 胡炼, 罗锡文, 等. 旋耕机自动调平系统设计与试验[J].农业机械学报, 2016, 47(S1): 117-123.
Zhou Hao, Hu Lian, Luo Xiwen, et al. Design and experiment on auto leveling system of rotary tiller [J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(S1): 117-123.
[14] 魏建胜, 潘树国, 田光兆, 等. 农业车辆双目视觉障碍物感知系统设计与试验[J]. 农业工程学报, 2021, 37(9): 55-63.
Wei Jiansheng, Pan Shuguo, Tian Guangzhao, et al. Design and experiments of the binocular visual obstacle perception system for agricultural vehicles [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(9): 55-63.
[15] Grieves M W. Product lifecycle management: The new paradigm for enterprises [J]. International Journal of Product Development, 2005, 2(1-2): 71-84.
[16] Grieves M. Virtually perfect: Driving innovative and lean products through product lifecycle management [M]. Florida: Space Coast Press, 2011.
[17] Piascik R, Vickers J, Lowry D, et al. Technology area 12: Materials, Structures, Mechanical Systems, and manufacturing road map [J]. NASA Office of Chief Technologist, 2010: 15-88.
[18] Glaessgen E H, Stargel D S. The digital twin paradigm for future NASA and US Air Force vehicles [C]. Proceedings of the 53rd AIAA/ASME/ASCE/AHE/ASC Structures, Structural Dynamics and Materials Conference, USA; AIAA, 2012.
[19] Majah T, Rajib D, Ljubisa S, et al. Design and testing of a modular sic based power block [C]. International Exhibition and Conference for Power Electronics, Europe; Intelligent Motion, Renewable Energy and Energy Management, 2016.
[20] 赵浩然, 刘检华, 熊辉, 等. 面向数字孪生车间的三维可视化实时监控方法[J].计算机集成制造系统, 2019, 25(6): 1432-1443.
Zhao Haoran, Liu Jianhua, Xiong Hui, et al. 3D visualization realtime monitoring method for digital twin workshop [J]. Computer Integrated Manufacturing Systems, 2019, 25(6): 1432-1443.
[21] 胡兴, 刘检华, 庄存波, 等. 基于数字孪生的复杂产品装配过程管控方法与应用[J]. 计算机集成制造系统, 2021, 27(2): 642-653.
Hu Xing, Liu Jianhua, Zhuang Cunbo, et al. Digital twinbased management method and application for the complex products assembly process [J]. Computer Integrated Manufacturing Systems, 2021, 27(2): 642-653.
[22] 刘庭煜, 洪庆, 孙毅锋, 等. 基于图卷积网络的数字孪生车间生产行为识别方法[J]. 计算机集成制造系统, 2021, 27(2): 501-509.
Liu Tingyu Y, Hong Qing, Sun Yifeng, et al. Approach for recognizing production action in digital twin shopfloor based on graph convolution network [J]. Computer Integrated Manufacturing Systems, 2021, 27(2): 501-509.
[23] 刘娟, 庄存波, 刘检华, 等. 基于数字孪生的生产车间运行状态在线预测[J]. 计算机集成制造系统, 2021, 27(2): 467-477.
Liu Juan, Zhuang Cunbo, Liu Jianhua, et al. Online prediction technology of workshop operating status based on digital twin [J]. Computer Integrated Manufacturing Systems, 2021, 27(2): 467-477.
[24] 曹远冲, 熊辉, 庄存波, 等. 基于数字孪生的复杂产品离散装配车间动态调度[J]. 计算机集成制造系统, 2021, 27(2): 557-568.
Cao Yuanchong, Xiong Hui, Zhuang Cunbo, et al. Dynamic scheduling of complex product discrete assembly workshop based on digital twin [J]. Computer Integrated Manufacturing Systems, 2021, 27(2): 557-568.
[25] 刘庭煜, 张培, 刘洋, 等. 基于视觉增强检测的车间人员数字孪生模型快速构建方法[J]. 计算机集成制造系统, 2021, 27(2): 545-556.
Liu Tingyu, Zhang Pei, Liu Yang, et al. Fast approach for modelling human digital twin in workshop based on enhanced visual detection [J]. Computer Integrated Manufacturing Systems, 2021, 27(2): 545-556.
[26] 张新长, 李少英, 周启鸣, 等. 建设数字孪生城市的逻辑与创新思考[J]. 测绘科学, 2021, 46(3): 147-152.
Zhang Xinchang, Li Shaoyin, Zhou Qiming, et al. The rationale and innovative thinking of building digital twin city [J]. Science of Surveying and Mapping, 2021, 46(3): 147-152.
[27] 王金江, 王舒辉, 张来斌, 等. 基于数字孪生的压气站场设备风险智能决策系统[J]. 天然气工业, 2021, 41(7): 115-123.
Wang Jinjiang, Wang Shuhui, Zhang Laibin, et al. Digital twin based intelligent risk decisionmaking system of compressor station equipment [J]. Natural Gas Industry, 2021, 41(7): 115-123.
[28] 李道亮, 杨昊. 农业物联网技术研究进展与发展趋势分析[J]. 农业机械学报, 2018, 49(1): 1-20.
Li Daoliang, Yang Hao. Stateoftheart Review for Internet of Things in Agriculture [J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(1): 1-20.
[29] 侯杰, 胡乃联, 李国清, 等. 多金属地下矿山生产计划动态优化[J]. 工程科学学报, 2016, 38(4): 453-460.
Hou Jie, Hu Nailian, Li Guoqing, et al. Dynamic optimization of production plans for multimetal underground mines [J]. Chinese Journal of Engineering, 2016, 38(4): 453-460.
[30] 王雷, 汪凌, 杜治千, 等. 农田平整度测量装置研究与预测分析[J]. 中国农机化学报, 2021, 42(10): 198-205.
Wang Lei, Wang Ling, Du Zhiqian, et al. Research and predictive analysis of farm land leveling measurement device [J]. Journal of Chinese Agricultural Mechanization, 2021, 42(10): 198-205.
[31] 吕金庆, 王英博, 兑瀚, 等. 驱动式马铃薯中耕机关键部件设计与碎土效果试验[J]. 农业机械学报, 2017, 48(10): 49-58.
Lü Jinqing, Wang Yingbo, Dui Han, et al. Design of key components of drivingtype potato cultivator and its soilbroken effect experiment [J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(10): 49-58.
[32] 刘成良, 林洪振, 李彦明, 等. 农业装备智能控制技术研究现状与发展趋势分析[J]. 农业机械学报, 2020, 51(1): 1-18.
Liu Chengliang, Lin Hongzheng, Li Yanming, et al. Analysis on status and development trend of intelligent control technology for agricultural equipment [J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(1): 1-18.
[33] 陶飞, 刘蔚然, 张萌, 等. 数字孪生五维模型及十大领域应用[J]. 计算机集成制造系统, 2019, 25(1): 1-18.
Tao Fei, Liu Weiran, Zhang Meng, et al. Fivedimension digital twin model and its ten applications [J]. Computer Integrated Manufacturing Systems, 2019, 25(1): 1-18.
[34] 张辰源, 陶飞. 数字孪生模型评价指标体系[J].计算机集成制造系统, 2021, 27(8): 2171-2186.
Zhang Chenyuan, Tao Fei. Evaluation index system for digital twin model [J]. Computer Integrated Manufacturing Systems, 2021, 27(8): 2171-2186.
[35] 杨帆, 吴涛, 廖瑞金, 等. 数字孪生在电力装备领域中的应用与实现方法[J]. 高电压技术, 2021, 47(5): 1505-1521.
Yang Fan, Wu Tao, Liao Ruijin, et al. Application and implementation method of digital twin in electric equipment [J]. High Voltage Engineering, 2021, 47(5): 1505-1521.
|