[1] 姚伟祥, 兰玉彬, 王娟, 等. AS350B3e直升机航空喷施雾滴飘移分布特性[J]. 农业工程学报, 2017, 33(22): 75-83.
Yao Weixiang, Lan Yubin, Wang Juan, et al. Droplet drift characteristics of aerial spraying of AS350B3e helicopter [J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(22): 75-83.
[2] 王昌陵, 何雄奎, 曾爱军, 等. 基于仿真果园试验台的植保无人机施药雾滴飘移测试方法与试验[J]. 农业工程学报, 2020, 36(13): 56-66.
Wang Changling, He Xiongkui, Zeng Aijun, et al. Measuring method and experiment on spray drift of chemicals applied by UAV sprayer based on an artificial orchard test bench [J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(13): 56-66.
[3] Li J, Shi Y, Lan Y, et al. Vertical distribution and vortex structure of rotor wind field under the influence of rice canopy [J]. Computers and Electronics in Agriculture, 2019, 159: 140-146.
[4] 李继宇, 周志艳, 胡炼, 等. 单旋翼电动无人直升机辅助授粉作业参数优选[J]. 农业工程学报, 2014, 30(10): 10-17.
Li Jiyu, Zhou Zhiyan, Hu Lian, et al. Optimization of operation parameters for supplementary pollination in hybrid rice breeding using uniaxial singlerotor electric unmanned helicopter [J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(10): 10-17.
[5] 招启军, 徐国华. 直升机计算流体动力学基础[M]. 北京: 科学出版社, 2016.
[6] Johnson W. Helicopter theory [M]. Courier Corporation, 2012.
[7] Komerath N M, Smith M J, Tung C. A review of rotor wake physics and modeling [J]. Journal of the American Helicopter Society, 2011, 56(2): 22006.
[8] Yoon S, Pulliam T H, Chaderjian N M. Simulations of XV-15 rotor flows in hover using overflow [J]. Proceedings of the 50th AHS Aeromechanics Specialists, AHS, San Francisco, CA, 2014: 1-11.
[9] Wachspress D A, Quackenbush T R, Boschitsch A H. Rotorcraft interactional aerodynamics with fast vortex/fast panel methods [J]. Journal of the American Helicopter Society, 2000, 48(4): 223-235.
[10] Teske M E, Wachspress D A, Thistle H W. Prediction of aerial spray release from UAVs [J]. Transactions of the ASABE, 2018, 61(3): 909-918.
[11] He C, Zhao J. Modeling rotor wake dynamics with viscous vortex particle method [J]. AIAA Journal, 2009, 47(4): 902-915.
[12] 魏鹏, 史勇杰, 徐国华, 等. 基于黏性涡模型的旋翼流场数值方法[J]. 航空学报, 2012, 33(5): 771-780.
Wei Peng, Shi Yongjie, Xu Guohua, et al. Numerical method for simulation rotor flow field based upon viscous vortex model [J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(5): 771-780.
[13] Chen R, Yuan Y, Thomson D. A review of mathematical modelling techniques for advanced rotorcraft configurations [J]. Progress in Aerospace Sciences, 2021, 120: 100681.
[14] 田志伟, 薛新宇, 李林, 等. 植保无人机施药技术研究现状与展望[J]. 中国农机化学报, 2019, 40(1): 37-45.
Tian Zhiwei, Xue Xinyu, Li Lin, et al. Research status and prospects of spraying technology of plantprotection unmanned aerial vehicle [J]. Journal of Chinese Agricultural Mechanization, 2019, 40(1): 37-45.
[15] Bilanin A J, Teske M E, Barry J W, et al. AGDISP: The aircraft spray dispersion model, code development and experimental validation [J]. Transactions of the ASAE, 1989, 32(1): 327-334.
[16] Teske M E, Bird S L, Esterly D M, et al. AgDRIFT (R): A model for estimating nearfield spray drift from aerial applications [J]. Environmental Toxicology and Chemistry, 2002, 21(3): 659-671.
[17] Parkin C S. Rotor induced air movements and their effects on droplet dispersal [J]. The Aeronautical Journal, 1979, 83(821): 183-187.
[18] Seredyn T P. A computational study of the fluid particles distribution in an helicopter wake [C]. Journal of Physics: Conference Series. IOP Publishing, 2018, 1101(1): 012032.
[19] 汪沛, 胡炼, 周志艳, 等. 无人油动力直升机用于水稻制种辅助授粉的田间风场测量[J]. 农业工程学报, 2013, 29(3): 54-61, 294.
Wang Pei, Hu Lian, Zhou Zhiyan, et al. Wind field measurement for supplementary pollination in hybrid rice breeding using unmanned gasoline engine singlerotor helicopter [J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(3): 54-61.
[20] 刘鑫. 单旋翼植保无人机旋翼流场下洗气流速度分布规律研究[D]. 大庆: 黑龙江八一农垦大学, 2019.
Liu Xin. Research on distribution regularity of downwash airflow velocity in rotor flow field of single rotor plant protection UAV [D]. Daqing: Heilongjiang Bayi Agricultural University, 2019.
[21] Tang Q, Zhang R, Chen L, et al.Highaccuracy, highresolution downwash flow field measurements of an unmanned helicopter for precision agriculture [J]. Computers and Electronics in Agriculture, 2020, 173: 105390.
[22] 石强, 管贤平, 孙宏伟. 基于CFD的小型植保无人直升机喷雾场数值模拟[J]. 江苏农业科学, 2016, 44(9): 360-364.
Shi Qiang, Guan Xianping, Sun Hongwei. Numerical simulation of spray field of small unmanned helicopter for plant protection based on CFD [J]. Jiangsu Agricultural Sciences, 2016, 44(9): 360-364.
[23] 石强. 小型无人直升机超低空飞行时下洗流场数值分析[J]. 排灌机械工程学报, 2015, 33(6): 521-525.
Shi Qiang. Numerical simulation for downwash flow field of smallsize unmanned helicopter hedgehopping [J]. Journal of Drainage and Irrigation Machinery Engineering, 2015, 33(6): 521-525.
[24] 王军锋, 徐文彬, 闻建龙, 等. 大载荷植保无人直升机喷雾气液两相流动数值模拟[J]. 农业机械学报, 2017, 48(9): 62-69.
Wang Junfeng, Xu Wenbin, Wen Jianlong, et al. Numerical simulation on gasliquid phase flow of largescale plant protection unmanned aerial vehicle spraying [J]. Journal of Agricultural Machinery, 2017, 48(9): 62-69.
[25] 徐文彬, 王军锋, 闻建龙, 等. 大载荷植保无人直升机近地飞行流场模拟[J]. 江苏大学学报(自然科学版), 2017, 38(6): 665-671.
Xu Weibin, Wang Junfeng, Wen Jianlong, et al. Numerical simulation for downwash flow field of largesize plant protection unmanned helicopter hedgehopping [J]. Journal of Jiangsu University (Natural Science Editions), 2017, 38(6): 665-671.
[26] 杨知伦, 葛鲁振, 祁力钧, 等. 植保无人机旋翼下洗气流对喷幅的影响研究[J]. 农业机械学报, 2018, 49(1): 116-122.
Yang Zhilun, Ge Luzhen, Qi Lijun, et al. Influence of UAV rotor downwash airflow on spray width [J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(1): 116-122.
[27] 贾志成. 小型无人直升机航空喷雾试验系统及喷雾流场研究[D]. 南京: 南京林业大学, 2018.
Jia Zhicheng. Research on aerial spray testing system and spraying flow field for small unmanned aerial vehicle [D]. Nanjing: Nanjing Forestry University, 2018.
[28] 边永亮, 李建平, 王鹏飞, 等. 单旋翼无人机流场分布特征及作业性能试验研究[J]. 河北农业大学学报, 2020, 43(3): 115-120, 129.
Bian Yongliang, Li Jianping, Wang Pengfei, et al. Experimental study on distribution characteristics and operating performance of airflow field in single rotor UAV [J]. Journal of Hebei Agricultural University, 2020, 43(3): 115-120, 129.
[29] 张宋超, 薛新宇, 秦维彩, 等. N-3型农用无人直升机航空施药飘移模拟与试验[J]. 农业工程学报, 2015, 31(3): 87-93.
Zhang Songchao, Xue Xinyu, Qin Weicai, et al. Simulation and experimental verification of aerial spraying drift on N-3 unmanned spraying helicopter [J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(3): 87-93.
[30] 张宋超, 薛新宇, 孙竹, 等. 单旋翼油动无人施药直升机悬停状态下风场下洗气流分布规律研究[J]. 中国农业文摘-农业工程, 2018, 30(3): 13-22.
[31] 王军. 单旋翼非定常流场的数值模拟及尺度效应的研究[D]. 杭州: 浙江大学, 2018.
Wang Jun. Numerical study of the unsteady flow field of a single rotor and the scale effect [D]. Hangzhou: Zhejiang University, 2018.
[32] 文晟, 韩杰, 兰玉彬, 等. 单旋翼植保无人机翼尖涡流对雾滴飘移的影响[J]. 农业机械学报, 2018, 49(8): 127-137, 160.
Wen Sheng, Han Jie, Lan Yubin, et al. Influence of wing tip vortex on drift of single rotor plant protection unmanned aerial vehicle [J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(8): 127-137, 160.
[33] Tang Q, Zhang R, Chen L, et al. Numerical simulation of the downwash flow field and droplet movement from an unmanned helicopter for crop spraying [J]. Computers and Electronics in Agriculture, 2020, 174: 105468.
[34] Tang Q, Chen L, Zhang R, et al. Effects of application height and crosswind on the crop spraying performance of unmanned helicopters [J]. Computers and Electronics in Agriculture, 2021, 181: 105961.
[35] Branlard E. Wind turbine aerodynamics and vorticitybased methods: Fundamentals and recent applications [M]. Springer, 2017.
[36] Jewel J W J, Heyson H H. Charts of the induced velocities near a lifting rotor [R]. NASAMEMO4-15-59L, 1959.
[37] Heyson H, Katzoff S. Induced velocities near a lifting rotor with nonuniform disk loading [R]. NACA-TR-1319, 1957.
|