中国农机化学报 ›› 2024, Vol. 45 ›› Issue (1): 152-159.DOI: 10.13733/j.jcam.issn.2095-5553.2024.01.022
杨涛1,孙付春2,黄波3,吴柏强4,冉光泽4
出版日期:
2024-01-15
发布日期:
2024-02-06
基金资助:
Yang Tao1, Sun Fuchun2, Huang Bo3, Wu Baiqiang4, Ran Guangze4
Online:
2024-01-15
Published:
2024-02-06
摘要: 果园机械化是提升生产效率、增加果农经济收入的重要手段。总结国内外果园作业平台关键技术研究进展,分析作业平台最新的研究成果,对比不同类型底盘结构之间的性能差异,概括常见作业平台升降机构、自动调平机构的类型与特点以及安全与稳定性方面的研究进展,探讨无人驾驶技术在作业平台中的应用情况并阐述常见路径规划技术路线。指出果园机械化发展存在配套设施不完善以至平台扩展性差、智能化程度低等问题,并提出果园作业平台应向着适应性强、底盘专用化、整机高度智能化、调平精度高等发展建议。
中图分类号:
杨涛, 孙付春, 黄波, 吴柏强, 冉光泽. 果园作业平台关键技术研究进展[J]. 中国农机化学报, 2024, 45(1): 152-159.
Yang Tao, Sun Fuchun, Huang Bo, Wu Baiqiang, Ran Guangze. Research progress on key technologies of orchard operating platform[J]. Journal of Chinese Agricultural Mechanization, 2024, 45(1): 152-159.
[1] 郑永军, 江世界, 陈炳太, 等. 丘陵山区果园机械化技术与装备研究进展[J]. 农业机械学报, 2020, 51(11): 1-20. Zheng Yongjun, Jiang Shijie, Chen Bingtai, et al. Review on technology and equipment of mechanization in hilly orchard [J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(11): 1-20. [2] 缪友谊, 陈小兵, 朱继平, 等. 果园作业平台研究进展分析[J]. 中国农机化学报, 2021, 42(6): 41-49. Miao Youyi, Chen Xiaobing, Zhu Jiping, et al. Research progress of orchard work platform [J]. Journal of Chinese Agricultural Mechanization, 2021, 42(6): 41-49. [3] 吕雍琪, 张宗毅, 吕晓兰. 果园机械化经济效益分析——以江苏烨佳梨园为例[J]. 中国农业大学学报, 2021, 26(11): 222-231. Lü Yongqi, Zhang Zongyi, Lü Xiaolan. Analysis of economic benefit of orchard mechanization: Taking Yejia pear orchard in Jiangsu as an example [J]. Journal of China Agricultural University, 2021, 26(11): 222-231. [4] 孙凝晖, 张玉成, 石晶林. 构建我国第三代农机的创新体系[J]. 中国科学院院刊, 2020, 35(2): 154-165. Sun Ninghui, Zhang Yucheng, Shi Jinglin. Build innovation system of third generation of agricultural machinery in China [J]. Bulletin of Chinese Academy of Sciences, 2020, 35(2): 154-165. [5] 罗锡文, 廖娟, 臧英, 等. 我国农业生产的发展方向: 从机械化到智慧化[J]. 中国工程科学, 2022, 24(1): 46-54. Luo Xiwen, Liao Juan, Zang Ying, et al. Developing from mechanized to smart agricultural production in China [J]. Strategic Study of CAE, 2022, 24(1): 46-54. [6] 张德学, 秦喜田, 刘学峰, 等. 国内外果园枝条修剪研究进程与配套设备[J]. 中国果树, 2021(2): 6-12. [7] 张悦, 宋月鹏, 韩云, 等. 丘陵山区果园植保机械研究现状及发展趋势[J]. 中国农机化学报, 2020, 41(5): 47-52. Zhang Yue, Song Yuepeng, Han Yun, et al. Research status and development trend of orchard plant protection machinery in hilly and mountainous areas [J]. Journal of Chinese Agricultural Mechanization, 2020, 41(5): 47-52. [8] 郑永军, 陈炳太, 吕昊暾, 等. 中国果园植保机械化技术与装备研究进展[J]. 农业工程学报, 2020, 36(20): 110-124. Zheng Yongjun, Chen Bingtai, Lü Haotun, et al. Research progress of orchard plant protection mechanization technology and equipment in China [J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(20): 110-124. [9] 高文杰, 张锋伟, 戴飞, 等. 果园机械化装备研究进展与展望[J]. 林业机械与木工设备, 2021, 49(12): 9-20. Gao Wenjie, Zhang Fengwei, Dai Fei, et al. Research progress and prospects of orchard mechanized equipment [J]. Forestry Machinery & Woodworking Equipment, 2021, 49(12): 9-20. [10] Li J, Zhong M, Zhang Y, et al. Optimized design of the power consumption test of mountain orchard transporters [J]. International Journal of Agricultural and Biological Engineering, 2021, 14(5): 107-114. [11] Jin Y, Liu J, Xu Z, et al. Development status and trend of agricultural robot technology [J]. International Journal of Agricultural and Biological Engineering, 2021, 14(1): 1-19. [12] Ali M, Islam M, Reza M N, et al. Analysis of power requirement of a smallsized trackedtractor during agricultural field operations [J]. IOP Conference Series: Earth and Environmental Science, 2021, 924(1): 12017. [13] 王韦韦, 陈黎卿, 杨洋, 等. 农业机械底盘技术研究现状与展望[J]. 农业机械学报, 2021, 52(8): 1-15. Wang Weiwei, Chen Liqing, Yang Yang, et al. Development and prospect of agricultural machinery chassis technology [J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(8): 1-15. [14] Zhang K, Lammers K, Chu P, et al. System design and control of an apple harvesting robot [J]. Mechatronics, 2021(79): 102644. [15] Zhang X, Song X. Research of comprehensive operation vehicle for apple picking [J]. International Journal of Vehicle Structures & Systems, 2021, 13(5): 618-623. [16] 汤晶宇, 寇欣, 徐克生, 等. 丘陵地区经济林内动力底盘研究现状分析[J]. 林业机械与木工设备, 2019, 47(12): 4-8. Tang Jingyu, Kou Xin, Xu Kesheng, et al. Analysis of research status of power chassis in economic forest in hilly area [J]. Forestry Machinery & Woodworking Equipment, 2019, 47(12): 4-8. [17] 杨涛, 吴柏强, 李晓晓, 等. 丘陵地形果园多功能电动作业平台设计与性能研究[J]. 湖北农业科学, 2023, 62(9): 158-164. Yang Tao, Wu Baiqiang, Li Xiaoxiao, et al. Design and performance study of a multifunctional electric operation platform for orchards in hilly terrain [J]. Hubei Agricultural Sciences, 2023, 62(9): 158-164. [18] 刘妤, 谢铌, 张拓. 小型山地履带底盘设计与仿真分析[J]. 机械设计, 2020, 37(6): 115-122. Liu Yu, Xie Ni, Zhang Tuo. Design and simulation of small crawler chassis for mountain areas [J]. Journal of Machine Design, 2020, 37(6): 115-122. [19] 刘平义, 王振杰, 李海涛, 等. 行星履带式农用动力底盘设计与越障性能研究[J]. 农业机械学报, 2014, 45(S1): 17-23. Liu Pingyi, Wang Zhenjie, Li Haitao, et al. Design and overcoming obstacles ability research of tracked driving chassis with planetary structure [J]. Transactions of the Chinese Society for Agricultural Machinery, 2014, 45(S1): 17-23. [20] 高巧明, 潘栋, 张星, 等. 全履带模块化无人农用动力底盘设计与仿真[J]. 农业机械学报, 2020, 51(S2): 561-570. Gao Qiaoming, Pan Dong, Zhang Xing, et al. Design and simulation of entire track modular unmanned agricultural power chassis [J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(S2): 561-570. [21] 崔志超, 管春松, 陈永生, 等. 温室用小型多功能电动履带式作业平台设计[J]. 农业工程学报, 2019, 35(9): 48-57. Cui Zhichao, Guan Chunsong, Chen Yongsheng, et al. Design of small multifunctional electric crawler platform for greenhouse [J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(9): 48-57. [22] Chen Y C, Chen L W, Chang M Y. A design of an unmanned electric tractor platform [J]. Agriculture, 2022, 12(1): 112. [23] 张鲁云, 孟祥金, 段爱国, 等. 特色林果业作业平台设计与试验[J]. 中国农机化学报, 2021, 42(10): 72-77. Zhang Luyun, Meng Xiangjin, Duan Aiguo, et al. Design and experiment of operation Platform for characteristic forest and fruit industry [J]. Journal of Chinese Agricultural Mechanization, 2021, 42(10): 72-77. [24] 金生, 蒋蘋, 杨俊朗, 等. 货箱自适应调平果园作业平台设计与试验[J]. 江西农业大学学报, 2022, 44(3): 714-724. Jin Sheng, Jiang Pin, Yang Junlang, et al. Design and testing of adaptive levelling orchard working platform for cargo box [J]. Acta Agriculturae Universitatis Jiangxiensis, 2022, 44(3): 714-724. [25] 于泳超, 康峰, 郑永军, 等. 果园高位自动调平作业平台设计及仿真[J]. 北京林业大学学报, 2021, 43(2): 150-159. Yu Yongchao, Kang Feng, Zheng Yongjun, et al. Design and simulation of the automaticleveling highposition platform in orchards [J]. Journal of Beijing Forestry University, 2021, 43(2): 150-159. [26] 吕昊暾, 胡召田, 于泳超, 等. 果园高位作业平台自动调平前馈PID控制方法[J]. 农业工程学报, 2021, 37(18): 20-28. Lü Haotun, Hu Zhaotian, Yu Yongchao, et al. Feedforward PID control method for the automatic leveling of an orchard highposition operation platform [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(18): 20-28. [27] 刘学峰, 钟波, 褚幼晖, 等. 新型果园采摘作业平台升降调平机构设计与分析[J]. 中国农机化学报, 2020, 41(2): 80-85. Liu Xuefeng, Zhong Bo, Chu Youhui, et al. Design and analysis of lifting and leveling mechanism for new orchard picking platform [J]. Journal of Chinese Agricultural Mechanization, 2020, 41(2): 80-85. [28] 王学良. 丘陵山地四履带底盘及自动调平装置的设计与试验[D]. 青岛: 山东农业大学, 2019. Wang Xueliang. Design and test of four track chassis and automatic leveling device in hilly and mountain areas [D]. Qingdao: Shandong Agricultural University, 2019. [29] 齐文超, 李彦明, 张锦辉, 等. 丘陵山地拖拉机车身调平双闭环模糊PID控制方法[J]. 农业机械学报, 2019, 50(10): 17-23. Qi Wenchao, Li Yanming, Zhang Jinhui, et al. Double closed loop fuzzy PID control method of tractor body leveling on hilly and mountainous areas [J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(10): 17-23. [30] Hwang S, Jang M, Nam J. Application of lateral overturning and backward rollover analysis in a multipurpose agricultural machine developed in south Korea [J]. Agronomy, 2021, 11(2): 297. [31] 陈明东, 王东伟, 尚书旗. 苹果多功能作业平台液压系统性能研究[J]. 机床与液压, 2020, 48(4): 46-49. Chen Mingdong, Wang Dongwei, Shang Shuqi. Study on the hydraulic system performance of multifunctional apple operating platform [J]. Machine Tool & Hydraulics, 2020, 48(4): 46-49. [32] 赵春江. 智慧农业的发展现状与未来展望[J]. 华南农业大学学报, 2021, 42(6): 1-7. Zhao Chunjiang. Current situations and prospects of smart agriculture [J]. Journal of South China Agricultural University, 2021, 42(6): 1-7. [33] 杨涛, 李晓晓. 农机自动驾驶系统研究进展与行业竞争环境分析[J]. 中国农机化学报, 2021, 42(11): 222-231. Yang Tao, Li Xiaoxiao. Research progress of agricultural machinery autopilot system and analysis of industry competition environment [J]. Journal of Chinese Agricultural Mechanization, 2021, 42(11): 222-231. [34] 张漫, 季宇寒, 李世超, 等. 农业机械导航技术研究进展[J]. 农业机械学报, 2020, 51(4): 1-18. Zhang Man, Ji Yuhan, Li Shichao, et al. Research progress of agricultural machinery navigation technology [J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(4): 1-18. [35] 郭成洋, 范雨杭, 张硕, 等. 果园车辆自动导航技术研究进展[J]. 东北农业大学学报, 2019, 50(8): 87-96. Guo Chengyang, Fan Yuhang, Zhang Shuo, et al. Progress on vehicle automatic navigation in orchard [J]. Journal of Northeast Agricultural University, 2019, 50(8): 87-96. [36] 杨涛, 李晓晓. 机器视觉技术在现代农业生产中的研究进展[J]. 中国农机化学报, 2021, 42(3): 171-181. Yang Tao, Li Xiaoxiao. Research progress of machine vision technology in modern agricultural production [J]. Journal of Chinese Agricultural Mechanization, 2021, 42(3): 171-181. [37] 刘成良, 林洪振, 李彦明, 等. 农业装备智能控制技术研究现状与发展趋势分析[J]. 农业机械学报, 2020, 51(1): 1-18. Liu Chengliang, Lin Hongzhen, Li Yanming, et al. Analysis on status and development trend of intelligent control technology for agricultural equipment [J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(1): 1-18. [38] Utamima A, Djunaidy A. Agricultural routing planning: A narrative review of literature [J]. Procedia Computer Science, 2022, 197: 693-700. [39] Pini M, Marucco G, Falco G, et al. Experimental testbed and methodology for the assessment of RTK GNSS receivers used in precision agriculture [J]. IEEE Access, 2020(8): 14690-14703. [40] Radocaj D, Placak I, Heffer G, et al. A lowcost global navigation satellite system positioning accuracy assessment method for agricultural machinery [J]. Applied Sciences, 2022, 12(2): 693. [41] Roshanianfard A, Noguchi N, Okamoto H, et al. A review of autonomous agricultural vehicles (The experience of Hokkaido University) [J]. Journal of Terramechanics, 2020, 91(24): 155-183. [42] 刘宇峰, 姬长英, 田光兆, 等. 自主导航农业机械避障路径规划[J]. 华南农业大学学报, 2020, 41(2): 117-125. Liu Yufeng, Ji Changying, Tian Guangzhao, et al. Obstacle avoidance path planning for autonomous navigation agricultural machinery [J]. Journal of South China Agricultural University, 2020, 41(2): 117-125. [43] 毛文菊, 刘恒, 王小乐, 等. 双导航模式果园运输机器人设计与试验[J]. 农业机械学报, 2022, 53(3): 27-39, 49. Mao Wenju, Liu Heng, Wang Xiaole, et al. Design and experiment of a dual navigation mode orchard transport robot [J]. Transactions of the Chinese Society for Agricultural Machinery, 2022: 53(3): 27-39, 49. |
[1] | 刘佳奇, 邱绪云, 高琦, 宋裕民. 果园作业平台车架耐久性研究[J]. 中国农机化学报, 2024, 45(1): 160-168. |
[2] | 王玉亮, 李汉卿, 陈兆英, 石绍军, 陈国防, 王金星, . 基于MPC的插秧机路径跟踪控制算法研究[J]. 中国农机化学报, 2022, 43(7): 173-178. |
[3] | 徐广飞, 陈美舟, 金诚谦, 苗河泉, 逄焕晓, 刁培松. 拖拉机自动驾驶关键技术综述[J]. 中国农机化学报, 2022, 43(6): 126-134. |
[4] | 缪友谊;陈小兵;朱继平;袁栋;陈伟;丁艳;. 果园作业平台研究进展分析[J]. 中国农机化学报, 2021, 42(6): 41-49. |
[5] | 杨涛, 李晓晓. 农机自动驾驶系统研究进展与行业竞争环境分析*[J]. 中国农机化学报, 2021, 42(11): 222-231. |
[6] | 张鲁云, 孟祥金, 段爱国, 殷彩云, 韩保保, 刘向新, . 特色林果业作业平台设计与试验[J]. 中国农机化学报, 2021, 42(10): 72-77. |
[7] | 张紫涵;张红梅;宋月鹏;任龙龙;范国强;许令峰;. 偏置阶梯刀盘式果园开沟机设计与试验[J]. 中国农机化学报, 2020, 41(9): 53-56+75. |
[8] | 范晓文;李雪军;王鹏飞;杨欣;李建平;刘洪杰;. 果园多工位作业平台低损输送系统设计与试验[J]. 中国农机化学报, 2020, 41(6): 69-73. |
[9] | 高菊玲;钟兴;张居同;欧阳凯琪;. 自动驾驶拖拉机轨迹跟踪研究[J]. 中国农机化学报, 2020, 41(10): 104-110. |
[10] | 李钊;樊桂菊;张昊;秦福;. 农机具自动调平现状及趋势分析[J]. 中国农机化学报, 2019, 40(4): 48-53. |
[11] | 张昊;樊桂菊;李钊;秦福;. 果园作业平台倾翻失稳预警系统设计与仿真试验[J]. 中国农机化学报, 2019, 40(4): 164-168. |
[12] | 宋月鹏;张紫涵;范国强;高东升;张红梅;张晓辉;. 我国果园开沟施肥机械研究现状及发展趋势[J]. 中国农机化学报, 2019, 40(3): 7-12+25. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2021《中国农机化学报 》编辑部
地址:南京市玄武区中山门外柳营100号 邮编: Tel: 025-84346270,84346296