[1] 籍延宝. 农业主要病虫害监测预警系统通用平台的开发及初步应用[D]. 北京: 中国农业大学, 2014.
Ji Yanbao. Development and preliminary application of universal platform for monitoring and early warning system of main diseases and insect pests of agricultural [D]. Beijing: China Agricultural University, 2014.
[2] 姚勇, 陶兰. 论专家系统在农业领域中的应用[J]. 计算机农业应用, 1989(2): 68-70.
[3] 张晓东. 内蒙古农业病虫害预测与诊断系统开发与应用研究[D]. 呼和浩特: 内蒙古农业大学, 2020.
Zhang Xiaodong. Development and application of agricultural disease and pests forecast and diagnosis system in Inner Mongolia [D]. Hohhot: Inner Mongolia Agricultural University, 2020.
[4] 荀守华. 灰色预测模型GM(1,1)在森林病虫害预测中的应用[J]. 山东林业科技, 1991(3): 38-41.
[5] 崔振洋, 李晓亮, 王伟. 马尔可夫链预测模型及其在农业病虫害预报中的应用[J]. 山西农业大学学报, 1994(1): 96-98, 109.Cui Zhenyang, Li Xiaoliang, Wang Wei.Markov chain forecasting model and its application in the forecasting of agricultural plant diseases and insect pests [J]. Journal of Shanxi Agricultural University, 1994(1): 96-98, 109.
[6] 孙朝云. 病虫害预测模型比较[J]. 黑龙江科技信息, 2011(28): 39.
[7] 范绍强, 谢咸升, 李峰, 等. 山西省小麦条锈病流行趋势预测模型研究[J]. 中国生态农业学报, 2007, 15(4): 113-115.Fan Shaoqiang, Xie Xiansheng, Li Feng, et al.Forecast model for prevalent stripe rust in winter wheat in Shanxi Province [J]. Chinese Journal of EcoAgriculture, 2007, 15(4): 113-115.
[8] 张善文, 张传雷, 丁军. 基于改进深度置信网络的大棚冬枣病虫害预测模型[J]. 农业工程学报, 2017, 33(19): 202-208.
Zhang Shanwen, Zhang Chuanlei, Ding Jun.Disease and insect pest forecasting model of greenhouse winter jujube based on modified deep belief network [J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(19): 202-208.
[9] Herms D A. Using degreedays and plant phenology to predict pest activity [M]. IPM (Integrated Pest Management) of Midwest Landscapes. St. Paul, MN: Minnesota Agricultural Experiment Station Publication, 2004, 58: 49-59.
[10] Grünig M, Razavi E, Calanca P, et al. Applying deep neural networks to predict incidence and phenology of plant pests and diseases [J]. Ecosphere, 2021, 12(10).
[11] 李文学, 郭琰杰, 胡婧棪, 等. 贺兰山东麓酿酒葡萄霜霉病孢子囊时空动态与田间病情及环境因子相关分析[C]. 绿色生态可持续发展与植物保护—中国植物保护学会第十二次全国会员代表大会暨学术年会论文集, 2017: 70.
[12] Hochreiter S, Schmidhuber J. Long shortterm memory [J].Neural Computation, 1997, 9(8): 1735-1780.
[13] Gers F A, Schmidhuber J, Cummins F. Learning to forget: Continual prediction with LSTM [J]. Neural Computation, 2000, 12(10): 2451-2471.
[14] Shi X, Chen Z. Convolutional LSTM network: A machine learning approach for precipitation nowcasting [C]. NIPS. Proceedings of the 28th International Conference on Neural Information Processing Systems Volume 1. Cambridge: MIT Press, 2015: 802-810.
[15] 方晓萍, 陈秀銮, 褚琦, 等. 基于PSOGSA-LSTM模型的长江经济带空气质量指数预测研究[J]. 数理统计与管理, 2023, 42(1): 14-25.
Fang Xiaoping, Chen Xiuluan, Chu Qi, et al. A study on forecast of air quality index in the Yangtze River economic zone based on PSOGSA-LSTM model [J]. Journal of Applied Statistics and Management, 2023, 42(1): 14-25.
[16] Wei D, Wei S. Traffic flow prediction based on BiLSTM and attention [J]. International Core Journal of Engineering, 2022, 8(3).
[17] 李莉, 李文军, 马德新, 等. 基于LSTM的温室番茄蒸腾量预测模型研究[J]. 农业机械学报, 2021, 52(10): 369-376.
Li Li, Li Wenjun, Ma Dexin, et al.Prediction model of transpiration of greenhouse tomato based on LSTM [J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(10): 369-376.
[18] 曹守启, 周礼馨, 张铮. 采用改进长短时记忆神经网络的水产养殖溶解氧预测模型[J]. 农业工程学报, 2021, 37(14): 235-242.
Cao Shouqi, Zhou Lixin, Zhang Zheng.Prediction model of dissolved oxygen in aquaculture based on improved long shortterm memory neural network [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(14): 235-242.
[19] 闵超, 詹炜, 张豫麒, 等. 基于匈牙利算法和LSTM网络的储粮害虫轨迹跟踪及行为研究[J]. 中国粮油学报, 2023(3): 28-34.
Min Chao, Zhan Wei, Zhang Yuqi, et al. Trajectory tracking and behavior analysis of stored grain pests via Hungarian Algorithm and LSTM network [J]. Journal of the Chinese Cereals and Oils Association, 2023(3): 28-34.
[20] 谢济铭, 夏玉兰, 秦雅琴, 等. 基于双向长短期记忆网络的城市快速路合流区车速预测[J/OL]. 西南交通大学学报: 1-9[2022-07-15]. http://kns.cnki.net/kcms/detail/51.1277.U.20220705.2038.020.html.
Xie Jiming, Xia Yulan, Qin Yaqin, et al. Prediction of vehicle speed in urban expressway confluence area based on twoway longterm shortterm memory network [J/OL].Journal of Southwest Jiaotong University: 1-9 [2022-07-15].http: //kns.cnki.net/kcms/detail/51.127.U.20220705.2038.020.html.
|