[1] 赵小强, 郭海科. 多特征融合的滚动轴承故障诊断[J]. 农业工程学报, 2023, 39(13): 80-88.
Zhao Xiaoqiang, Guo Haike. Fault diagnosis of rolling bearings using multifeature fusion [J]. Transactions of the Chinese Society of Agricultural Engineering, 2023, 39(13): 80-88.
[2] 李哲, 杨光友, 陈学海. 基于B/S架构的联合收割机远程监测平台研究[J]. 中国农机化学报, 2019, 40(4): 151-157.
Li Zhe, Yang Guangyou, Chen Xuehai.Research on remote monitoring platform of combine harvester based on B/Sarchitecture [J]. Journal of Chinese Agricultural Mechanization, 2019, 40(4): 151-157.
[3] 傅秀清, 柳伟, 费秀国, 等. 基于LabVIEW的高速齿轮箱振动信号监测分析系统研究[J]. 中国农机化学报, 2018, 39(11): 61-66.
Fu Xiuqing, Liu Wei, Fei Xiuguo, et al. Research on highspeed gear box vibrationsignal analysis system based on LabVIEW [J]. Journal of Chinese Agricultural Mechanization, 2018, 39(11): 61-66.
[4] 司伟伟, 岑健, 伍银波, 等. 小样本轴承故障诊断研究综述[J]. 计算机工程与应用, 2023, 59(6): 45-56.Si Weiwei, Cen Jian, Wu Yinbo, et al. Review of research on bearing fault diagnosis with small samples [J]. Computer Engineering and Applications, 2023, 59(6): 45-56.
[5] 任海军, 韦冲, 谭志强, 等. 基于CEEMDAN—IAWT方法的滚动轴承振动信号降噪[J]. 振动与冲击, 2023, 42(13): 199-207, 268.
Ren Haijun,Wei Chong,Tan Zhiqiang,et al. Denoising of rolling bearing vibration signals based on CEEMDAN—IAWT method [J]. Journal of Vibration and Shock, 2023, 42(13): 199-207, 268.
[6] 轩梦辉, 赵思夏, 徐立友, 等. 改进VMD和LSTM的联合收割机装配质量检测方法[J]. 中国农机化学报, 2023, 44(3): 132-140.
Xuan Menghui, Zhao Sixia, Xu Liyou, et al. Assembly quality inspection method of combine harvester based on improved VMD and LSTM [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(3): 132-140.
[7] Apostolidis G K, Hadjileontiadis L J. Swarm decomposition: A novel signal analysis using swarm intelligence [J]. Signal Processing, 2017, 132: 40-50.
[8] 李娟, 程军圣, 黄祝庆, 等. 基于SWD—AVDIF的齿轮箱复合故障诊断方法[J]. 噪声与振动控制, 2019, 39(1): 166-171.Li Juan, Cheng Junsheng, Huang Zhuqing, et al. Multifaults diagnosis method for gearboxes based on SWD—AVDIF [J]. Noise and Vibration Control, 2019, 39(1): 166-171.
[9] 朱亚军, 胡建钦, 李武, 等. 基于SWD和MOMEDA的滚动轴承微弱故障特征识别[J]. 轴承, 2021(6): 38-43.Zhu Yajun, Hu Jianqin, Li Wu, et al. Identification of weak fault features of rolling bearings based on SWD and MOMEDA [J]. Bearing, 2021(6): 38-43.
[10] Wang H, Sun W, He L, et al. Intelligent fault diagnosis method for gear transmission systems based on improved multiscale reverse dispersion entropy and swarm decomposition [J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71.
[11] 陈鹏, 赵小强. 基于优化VMD与改进阈值降噪的滚动轴承早期故障特征提取[J]. 振动与冲击, 2021, 40(13): 146-153.
Chen Peng, Zhao Xiaoqiang. Early fault feature extraction of rolling bearing based on optimized VMD and improved threshold denoising [J]. Journal of Vibration and Shock, 2021, 40(13): 146-153.
[12] Xiao C, Yu J. Adaptive swarm decomposition algorithm for compound fault diagnosis of rolling bearings [J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 1-14.
[13] Song Q, Jiang X, Liu J, et al. Adaptive swarm decomposition guided by spectral characteristic information scanner and its application for bearing fault diagnosis [J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71: 1-12.
[14] Miao Y, Zhao M, Makis V, et al. Optimal swarm decomposition with whale optimization algorithm for weak feature extraction from multicomponent modulation signal [J]. Mechanical Systems and Signal Processing, 2019, 122: 673-691.
[15] Mirjalili S, Mirjalili S M, Lewis A. Grey wolf optimizer [J]. Advances in Engineering Software, 2014, 69: 46-61.
[16] 滕志军, 吕金玲, 郭力文, 等. 一种基于Tent映射的混合灰狼优化的改进算法[J]. 哈尔滨工业大学学报, 2018, 50(11): 40-49.Teng Zhijun,Lü Jinling, Guo Liwen, et al.An improved hybrid grey wolf optimization algorithm based on Tent mapping [J].Jornal of Harbin Institute of Technology, 2018, 50(11): 40-49.
[17] McDonald G L, Zhao Q, Zuo M J. Maximum correlated kurtosis deconvolution and application on gear tooth chip fault detection [J]. Mechanical Systems and Signal Processing, 2012, 33: 237-255.
|