[1] Iseki H, Watanabe S, Mase M. A potential system for the isolation and propagation of porcine deltacoronavirus using embryonated chicken eggs [J]. Journal of Virological Methods, 2021, 290: 114068.
[2] Yu Qingzhong, Li Yufeng, Kiril Dimitrov, et al. Genetic stability of a Newcastle disease virus vectored infectious laryngotracheitis virus vaccine after serial passages in chicken embryos [J]. Vaccine, 2019, 38(4): 925-932.
[3] 唐静, 辛丽, 李晓丹, 等. 2015—2016年度中国甲型H1N1亚型流感病毒疫苗候选株的制备及鉴定[J]. 中华实验和临床病毒学杂志, 2017, 31(4): 348-352.Tang Jing, Xin Li, Li Xiaodan, et al. Preparation and identification of influenza H1N1 subtype vaccine candidate strain in China [J]. Chinese Journal of Experimental and Clinical Virology, 2017, 31(4): 348-352.
[4] 徐彦伟, 徐爱军, 颉潭成, 等. 基于多信息融合的疫苗制备中鸡蛋胚体分拣系统[J]. 农业机械学报, 2015, 46(2): 20-26.
Xu Yanwei, Xu Aijun, Xie Tancheng, et al. Automatic sorting system of egg embryo in biological vaccines production based on multiinformation fusion [J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(2): 20-26.
[5] 郭盟, 董新明, 韩广, 等. 基于卷积神经网络的蛋胚活性精准检测方法研究[J]. 应用光学, 2021, 42(2): 268-275.Guo Meng, Dong Xinming, Han Guang, et al. Research on accurate detection method of egg embryo activity based on convolutional neural network [J]. Journal of Applied Optics, 2021, 42(2): 268-275.
[6] Bao G J, Jia M M, Xun Y, et al. Cracked egg recognition based on machine vision [J]. Computers and Electronics in Agriculture, 2019, 158: 159-166.
[7] 涂伟沪, 蔡玲霞, 李学军. 基于改进蝗虫算法优化Canny算子的鸡蛋裂纹图像检测[J]. 食品与机械, 2022, 38(2): 167-172, 202.
Tu Weihu, Cai Lingxia, Li Xuejun. Egg crack image detection method based on improved grasshopper optimization algorithm and Canny operator [J]. Food & Machinery, 2022, 38(2): 167-172, 202.
[8] 辛永信, 黄泳波. 基于机器视觉的禽蛋脏污及裂纹检测系统设计[J]. 机电信息, 2020(2): 108-110.
[9] Cheng C W, Feng P H, Xie J H, et al. Eggshell crack detection and egg classification using resonance and support vector machine methods [J]. Applied Engineering in Agriculture, 2019, 35(1): 23-30.
[10] Lai C C, Li C H, Huang K J, et al. Duck eggshell crack detection by nondestructive sonic measurement and analysis [J]. Sensors, 2021, 21(21): 7299.
[11] 刘鹏, 屠康, 潘磊庆, 等. 基于多传感器融合的鸡蛋裂纹系统性识别[J]. 农业机械学报, 2010, 41(10): 185-189, 203.
Liu Peng, Tu Kang, Pan Leiqing, et al. Systematic recognition research of egg crack based on multisensor fusion [J]. Transactions of the Chinese Society for Agricultural Machinery, 2010, 41(10): 185-189, 203.
[12] Sun Li, Zhang Pengqi, Feng Siyu, et al. Eggshell crack detection based on the transient impact analysis and crosscorrelation method [J]. Current Research in Food Science, 2021, 4: 716-723.
[13] 罗慧, 闫思蒙, 卢伟, 等. 基于力—声学特性的鸡蛋带小裂纹在线检测方法[J]. 农业机械学报, 2016, 47(11): 224-230.
Luo Hui, Yan Simeng, Lu Wei, et al. Microcracked eggs online detection method based on forceacoustic features [J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(11): 224-230.
[14] 李雅琪, 孙力, 陈诚, 等. 基于多维振动响应信号分析的鸡蛋裂纹检测研究[J]. 镇江高专学报, 2019, 32(4): 31-35.Li Yaqi, Sun Li, Chen Cheng, et al. A study of eggshell crack detection based on the analysis of multidimensional vibration signals [J]. Journal of Zhenjiang College, 2019, 32(4): 31-35.
[15] 陈静, 梁俊毅. 基于机器视觉的禽蛋外观品质在线检测系统设计[J]. 食品工业, 2020, 41(5): 232-234.Chen Jing, Liang Junyi. Design of online detection system for egg appearance quality based on machine vision [J]. The Food Industry, 2020, 41(5): 232-234.
[16] 赵祚喜, 罗阳帆, 黄杏彪, 等. 基于机器视觉和YOLOv4的破损鸡蛋在线检测研究[J]. 现代农业装备, 2022, 43(1): 8-16.Zhao Zuoxi, Luo Yangfan, Huang Xingbiao, et al. Research on online detection of damaged eggs based on machine vision and YOLOv4 [J]. Modern Agricultural Equipment, 2022, 43(1): 8-16.
[17] 张健, 崔英杰. 基于改进粒子群算法的鸡蛋裂纹检测方法[J]. 食品与机械, 2020, 36(7): 136-139, 226.〖JP3〗Zhang Jian, Cui Yingjie. Egg crack detection based on improved particle swarm optimization [J]. Food & Machinery, 2020, 36(7): 136-139, 226.
[18] He K M, Zhang X Y, Ren S Q, et al. Deep residual learning for image recognition [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
[19] Guo M H, Xu T X, Liu J J, et al. Attention mechanisms in computer vision: A survey [J]. Computational Visual Media, 2022: 1-38.
[20] Qin Z Q, Zhang P Y, Wu F, et al. FcaNet: Frequency channel attention networks [C]. Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021: 783-792.
[21] EscuderoVinolo M, Bescos J. Squeezing the DCT to fight camouflage [J]. Journal of Mathematical Imaging and Vision, 2020, 62(2): 206-222.
[22] 万丰, 苑豪杰, 宫威. 基于离散余弦变换的数字图像压缩技术研究[J]. 自动化应用, 2020(3): 65-67.
[23] 狄恩彪, 徐光辉. 基于部分离散余弦变换的卷积神经网络设计与分析[J]. 通信技术, 2020, 53(7): 1636-1640.
Di Enbiao, Xu Guanghui. Design and analysis of convolutional neural network based on partial discrete cosine transform [J]. Communications Technology, 2020, 53(7): 1636-1640.
[24] Xie S N, Girshick R, Dollar P, et al. Aggregated residual transformations for deep neural networks [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 1492-1500.
|