[1] 杨会锋. 新疆红花丝机械化采收研究现状[J]. 新疆农机化, 2020(5): 34-37.Yang Huifeng. Research status of mechanized harvesting of safflower silk in xinjiang [J]. Xinjiang Agricultural Mechanization, 2020(5): 34-37.
[2] DeAn Z, Jidong L, Wei J, et al. Design and control of an apple harvesting robot [J]. Biosystems Engineering, 2011, 110(2): 112-122.
[3] 伍锡如, 黄国明, 刘金霞, 等. 新型苹果采摘机器人的设计与试验[J]. 科学技术与工程, 2016, 16(9): 71-79.
Wu Xiru, Huang Guoming, Liu Jinxia, et al. Design and experiment of a new type apple picking robot [J]. Science Technology and Engineering, 2016,16 (9): 71-79.
[4] Bao X, Mao J, Dai P, et al. Research on trajectory planning and control system of general mobile platform for mountain orchard [J]. The Journal of Engineering, 2022, 2022(5): 466-477.
[5] Zhang W. Design and adaptive control of omnidirectional mobile platform with four driving wheels [J]. American Journal of Scientific Research and Essays, 2018, 3(7).
[6] Fan X M, Ruan Q. Design and locomotion analysis of a closechain legwheel mobile platform [J]. Industrial Robot: the international journal of robotics research and application, 2023, 50(1): 122-134.
[7] 梁丹丹, 李帅波, 王立强, 等. 可移动式红花收获装置的设计[J]. 新疆农机化, 2021(2): 21-23.Liang Dandan, Li Shuaibo, Wang Liqiang, et al. Design of movable safflower harvesting device [J]. Xinjiang Agricultural Mechanization, 2021 (2): 21-23.
[8] 李磊, 叶涛, 谭民, 等. 移动机器人技术研究现状与未来[J]. 机器人, 2002(5): 475-480.
Li Lei, Ye Tao, Tan Min, et al. Present state and future development of mobile robot technology research [J]. Robot, 2002(5): 475-480.
[9] 张延尊. 丘陵山区茶园管理机移动平台的研制[D]. 重庆: 西南大学, 2020.
Zhang Yanzun. Development of mobile platform for tea garden management machine in hilly and mountainous areas [D]. Chongqing: Southwest University, 2020.
[10] 闫树兵. 基于虚拟样机技术农业轮式移动平台的机械子系统研究[D]. 南京: 南京农业大学, 2007.
Yan Shubing. A study on mechanical subsystem agricultural wheeled mobile platform based on virtual prototyping technology [D]. Nanjing: Nanjing Agricultural University, 2007.
[11] 孙书鹏. 全自动调平试验系统研究[D]. 石家庄: 河北科技大学, 2014.
Sun Shupeng. Research of automatic leveling test system [D]. Shijiazhuang: Hebei University of Science and Technology, 2014.
[12] 沈红光. 高地隙折腰式水田动力底盘设计与试验[D]. 哈尔滨: 东北农业大学, 2017.
Shen Hongguang. Design and experiment of highclearance rollwaist power chassis for paddy field [D]. Harbin: Northeast Agricultural University, 2017.
[13] 季位文. 高地隙植保机底盘结构设计与试验研究[D]. 长沙: 湖南农业大学, 2020.
Ji Weiwen. Structural design and experimental study of chassis high gap planter [D]. Changsha: Hunan Agricultural University, 2020.
[14] 候志伟. 轮式果园作业平台性能分析与仿真[D]. 杨凌: 西北农林科技大学, 2016.
Hou Zhiwei. Performance analysis and simulation of wheel orchard work platform [D]. Yangling: Northwest A & F University, 2016.
[15] 赵宇楠, 司景萍, 王二毛, 等. 基于ANSYS的矿用自卸车车架结构优化设计[J]. 煤矿机械, 2014, 35(3): 18-21.
Zhao Yunan, Si Jingping, Wang Ermao, et al. Structure optimal design of mining dump truck frame based on ANSYS [J]. Coal Mine Machinery, 2014, 35(3): 18-21.
[16] 董芒, 顾宝兴, 姬长英, 等. 水果采摘机器人智能移动平台的设计与试验[J]. 华南农业大学学报, 2016, 37(4): 128-133.
Dong Mang, Gu Baoxing, Ji Changying, et al. Design and experiment of an intelligent mobile platform loaded with a fruit picking robot [J]. Journal of South China Agricultural University, 2016, 37(4): 128-133.
[17] 侯鹏龙. 加装倾斜旋转器挖掘机工作装置的静力学分析[D]. 太原: 太原科技大学, 2017.
Hou Penglong. Statics analysis of working device of excavator with tiltrotator [D]. Taiyuan:Taiyuan University of Science and Technology, 2017.
[18] 赵艳梅. 基于ANSYS Workbench的某车架有限元分析及轻量化研究[D]. 郑州: 郑州大学, 2018.
Zhao Yanmei. Finite element analysis and lightweight research of a frame based on ANSYS Workbench [D]. Zhengzhou:Zhengzhou University, 2018.
[19] 陈树人, 韩红阳, 陈刚, 等. 喷杆喷雾机机架动态特性分析与减振设计[J]. 农业机械学报, 2013, 44(4): 50-53, 20.
Chen Shuren, Han Hongyang, Chen Gang, et al. Dynamic characteristic analysis and vibration reduction design for sprayer frame [J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(4): 50-53, 20.
|