[1] 谢金兰, 吴建明, 黄杏, 等. 我国甘蔗新品种(系)的抗旱性研究[J]. 江苏农业科学, 2015, 43(3): 108-112.
[2] 黄基杰. 甘蔗地快速识别的样本库建设——以广西崇左为例[J]. 南方国土资源, 2019(4): 45-47.
[3] 张乐, 金秀, 傅雷扬, 等. 基于Faster RCNN深度网络的油菜田间杂草识别方法[J]. 激光与光电子学进展, 2020, 57(2): 304-312.
Zhang Le, Jin Xiu, Fu Leiyang, et al. Recognition method for weeds in rapeseed field based on faster RCNN deep network [J]. Laser & Optoelectronics Progress, 2020, 57(2): 304-312.
[4] 孙俊, 谭文军, 武小红, 等. 多通道深度可分离卷积模型实时识别复杂背景下甜菜与杂草[J]. 农业工程学报, 2019, 35(12): 184-190.
Sun Jun, Tan Wenjun, Wu Xiaohong, et al. Realtime recognition of sugar beet and weeds in complex backgrounds using multichannel depthwise separable convolution model [J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(12): 184-190.
[5] 赵辉, 曹宇航, 岳有军, 等. 基于改进DenseNet的田间杂草识别[J]. 农业工程学报, 2021, 37(18): 136-142.
Zhao Hui, Cao Yuhang, Yue Youjun, et al. Field weed recognition based on improved DenseNet [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(18): 136-142.
[6] 毛文华, 王辉, 赵博, 等. 基于株心颜色的玉米田间杂草识别方法[J]. 农业工程学报, 2009, 25(S2): 161-164.
Mao Wenhua, Wang Hui, Zhao Bo, et al. Weed detection method based the center color of corn seedling [J]. Transactions of the Chinese Society of Agricultural Engineering, 2009, 25(S2): 161-164.
[7] 谈蓉蓉, 朱伟兴. 基于图像处理技术的杂草特征提取方法研究[J]. 传感器与微系统, 2009, 28(2): 56-59, 65.
Tan Rongrong, Zhu Weixing. Research of weed feature extraction method based on image processing technology [J]. Transducer and Microsystem Technologies, 2009, 28(2): 56-59, 65.
[8] 曹晶晶, 王一鸣, 毛文华, 等. 基于纹理和位置特征的麦田杂草识别方法[J]. 农业机械学报, 2007(4): 107-110.
Cao Jingjing, Wang Yiming, Mao Wenhua, et al. Weed detection method in wheat field based on texture and position features [J]. Transactions of the Chinese Society for Agricultural Machinery, 2007(4): 107-110.
[9] 李向辉. 基于卷积神经网络的甘蔗切种机茎节特征识别系统[D]. 南宁: 广西民族大学, 2020.
Li Xianghui. A feature recognition system for sugarcane seed cutter based on convolutional neural network [D]. Nanning: Guangxi University for Nationalities, 2020.
[10] 孙哲, 张春龙, 葛鲁镇, 等. 基于Faster RCNN的田间西兰花幼苗图像检测方法[J]. 农业机械学报, 2019, 50(7): 216-221.
Sun Zhe, Zhang Chunlong, Ge Luzhen, et al. Image detection method for broccoli seedlings in field based on faster RCNN [J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(7): 216-221.
[11] 朱永宁, 周望, 杨洋, 等. 基于Faster RCNN的枸杞开花期与果实成熟期识别技术[J]. 中国农业气象, 2020, 41(10): 668-677.
Zhu Yongning, Zhou Wang, Yang Yang, et al. Automatic identification technology of lycium barbarum flowering period and fruit ripening period based on Faster RCNN [J]. Chinese Journal of Agro meteorology, 2020, 41(10): 668-677.
[12] 李就好, 林乐坚, 田凯, 等. 改进Faster RCNN的田间苦瓜叶部病害检测[J]. 农业工程学报, 2020, 36(12): 179-185.
Li Jiuhao, Lin Lejian, Tian Kai, et al. Detection of leaf diseases of balsam pear in the field based on improved Faster RCNN [J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(12): 179-185.
[13] 樊湘鹏, 周建平, 许燕, 等. 基于优化Faster RCNN的棉花苗期杂草识别与定位[J]. 农业机械学报, 2021, 52(5): 26-34.
Fan Xiangpeng, Zhou Jianping, Xu Yan, et al. Identification and localization of weeds based on optimized Faster RCNN in cotton seedling stage [J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(5): 26-34.
[14] 金小俊, 孙艳霞, 于佳琳, 等. 基于深度学习与图像处理的蔬菜苗期杂草识别方法[J]. 吉林大学学报(工学版), 2023, 53(8): 2421-2429.
Jin Xiaojun, Sun Yanxia, Yu Jialin, et al. Weed recognition in vegetable at seedling stage based on deep learning and image processing [J]. Journal of Jilin University (Engineering and Technology Edition), 2023, 53(8): 2421-2429.
[15] 尚文卿, 齐红波. 基于改进Faster RCNN与迁移学习的农田杂草识别算法[J]. 中国农机化学报, 2022, 43(10): 176-182.
Shang Wenqing, Qi Hongbo. Identification algorithm of field weeds based on improved Faster RCNN and transfer learning [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(10): 176-182.
[16] 易佳昕, 张荣华, 刘长征, 等. 基于低空无人机影像和改进Faster RCNN的棉田杂草识别方法[J]. 石河子大学学报(自然科学版), 2022, 40(4): 520-528.
Yi Jiaxin, Zhang Ronghua, Liu Changzheng, et al. Weed detection method in cotton field based on low altitude UAV image and improved Faster RCNN [J]. Journal of Shihezi University (Natural Science), 2022, 40(4): 520-528.
[17] 彭明霞, 夏俊芳, 彭辉. 融合FPN的Faster RCNN复杂背景下棉田杂草高效识别方法[J]. 农业工程学报, 2019, 35(20): 202-209.
Peng Mingxia, Xia Junfang, Peng Hui, et al. Efficient recognition of cotton and weed in field based on Faster RCNN by integrating FPN [J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(20): 202-209.
[18] 孟庆宽, 张漫, 杨晓霞, 等. 基于轻量卷积结合特征信息融合的玉米幼苗与杂草识别[J]. 农业机械学报, 2020, 51(12): 238-245, 303.
Meng Qingkuan, Zhang Man, Yang Xiaoxia, et al. Recognition of maize seedling and weed based on light weight convolution and feature fusion [J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(12): 238-245, 303.
[19] 李春明, 逯杉婷, 远松灵, 等. 基于Faster RCNN的除草机器人杂草识别算法[J]. 中国农机化学报, 2019, 40(12): 171-176.
Li Chunming, Lu Shanting, Yuan Songling, et al. Weed identification algorithm of weeding robot based on Faster RCNN[J]. Journal of Chinese Agricultural Mechanization, 2019, 40(12): 171-176.
[20] 孙腾飞. 白菜田的杂草识别研究[D]. 昆明: 昆明理工大学, 2019.
Sun Tengfei. Study on weed identification in cabbage field [D]. Kunming: Kunming University of Science and Technology, 2019.
[21] 韦保特. 甘蔗新品种桂糖42号在百色市的种植表现及高产栽培技术[J]. 现代农业科技, 2016(12): 101, 105.
[22] Ren Shaoqing. Faster RCNN: Towards realtime object detection with region proposal networks [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-1149.
[23] Pang J, Chen K, Shi J, et al. Libra RCNN: Towards balanced learning for object detection [C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019: 821-830.
[24] Zhang H, Chang H, Ma B, et al. Dynamic RCNN: Towards high quality object detection via dynamic training [C]. Computer VisionECCV 2020: 16th European Conference, Glasgow, 2020: 260-275.
[25] Bodla N, Singh B, Chellappa R, et al. SoftNMS-improving object detection with one line of code [C]. Proceedings of the IEEE International Conference on Computer Vision, 2017: 5561-5569.
|