Journal of Chinese Agricultural Mechanization ›› 2023, Vol. 44 ›› Issue (5): 198-207.
Previous Articles Next Articles
Fu Hao1, 2, Zhao Xueguan2, Zhai Changyuan1, 2, Zheng Kang2, Zheng Shenyu2, Wang Xiu2
Online:
2023-05-15
Published:
2023-06-02
付豪1, 2,赵学观2,翟长远1, 2,郑康2,郑申玉2,王秀2
基金资助:
CLC Number:
Fu Hao, , Zhao Xueguan, Zhai Changyuan, , Zheng Kang, Zheng Shenyu, Wang Xiu. Research progress on weed recognition method based on deep learning technology[J]. Journal of Chinese Agricultural Mechanization, 2023, 44(5): 198-207.
付豪, , 赵学观, 翟长远, , 郑康, 郑申玉, 王秀. 基于深度学习的杂草识别方法研究进展[J]. 中国农机化学报, 2023, 44(5): 198-207.
[1] 高平磊, 郭水良, 印丽萍, 等. 影响我国杂草分布危害的性状统计分析[J]. 上海师范大学学报(自然科学版), 2010, 39(6): 623-629. Gao Pinglei, Guo Shuiliang, Yin Liping, et al. Statistical analysis on traits influencing weed distribution and their damages in China [J]. Journal of Shanghai Normal University (Philosophy & Social Sciences Edition), 2010, 39(6): 623-629. [2] Hasan A S M M, Sohel F, Diepeveen D, et al. A survey of deep learning techniques for weed detection from images [J]. Computers and Electronics in Agriculture, 2021, 184: 106067. [3] 苗中华, 余孝有, 徐美红, 等. 基于图像处理多算法融合的杂草检测方法及试验[J]. 智慧农业(中英文), 2020, 2(4): 103-115. Miao Zhonghua, Yu Xiaoyao, Xu Meihong, et al. Automatic weed detection method based on fusion of multiple image processing algorithms [J]. Smart Agriculture, 2020, 2(4): 103-115. [4] 袁洪波, 赵努东, 程曼. 基于图像处理的田间杂草识别研究进展与展望[J]. 农业机械学报, 2020, 51(S2): 323-334. Yuan Hongbo, Zhao Nudong, Cheng Man. Review of weeds recognition based on image processing [J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(S2): 323-334. [5] 付文博, 孙涛, 梁藉, 等. 深度学习原理及应用综述[J]. 计算机科学, 2018, 45(S1): 11-15, 40. Fu Wenbo, Sun Tao, Liang Ji, et al. Review of principle and application of deep learning [J]. Computer Science. 2018, 45(S1): 11-15, 40. [6] 傅隆生, 宋珍珍, Zhang Xin, 等. 深度学习方法在农业信息中的研究进展与应用现状[J]. 中国农业大学学报, 2020, 25(2): 105-120. Fu Longsheng, Song Zhenzhen, Zhang Xin, et al. Applications and research progress of deep learning in agriculture [J]. Journal of China Agricultural University, 2020, 25(2): 105-120. [7] 胡越, 罗东阳, 花奎, 等. 关于深度学习的综述与讨论[J]. 智能系统学报, 2019, 14(1): 1-19. Hu Yue, Luo Dongyang, Hua Kui, et al. Overview on deep learning [J]. CAAI Transactions on Intelligent Systems, 2019, 14(1): 1-19. [8] Lecun Y, Bengio Y, Hinton G. Deep learning [J]. Nature, 2015, 521: 436-444. [9] Li G, Zhang M, Li J, et al. Efficient densely connected convolutional neural networks [J]. Pattern Recognition, 2021, 109: 107610. [10] 弋凡. 基于FPGA的卷积神经网络加速器的设计与实现[D]. 西安: 西安电子科技大学, 2019. Ge Fan. Design and implementation of convolution neural network based on FPGA [D], Xian: Xidian University, 2019. [11] 赵博雅. 基于卷积神经网络的硬件加速器设计及实现研究[D]. 哈尔滨: 哈尔滨工业大学, 2018. Zhao Boya. Study on design and implementation of hardware accelerators based on convolutional neural networks [D]. Harbin: Harbin Institute of Technology, 2018. [12] 王璨, 武新慧, 李志伟. 基于卷积神经网络提取多尺度分层特征识别玉米杂草[J]. 农业工程学报, 2018, 34(5): 144-151. Wang Can, Wu Xinhui, Li Zhiwei. Recognition of maize and weed based on multiscale hierarchical features extracted by convolutional neural network [J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(5): 144-151. [13] 彭明霞, 夏俊芳, 彭辉. 融合FPN的Faster R-CNN复杂背景下棉田杂草高效识别方法[J]. 农业工程学报, 2019, 35(20): 202-209. Peng Mingxia, Xia Junfang, Peng Hui. Efficient recognition of cotton and weed in field based on Faster R-CNN by integrating FPN [J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(20): 202-209. [14] 姜红花, 王鹏飞, 张昭, 等. 基于卷积网络和哈希码的玉米田间杂草快速识别方法[J]. 农业机械学报, 2018, 49(11): 30-38. Jiang Honghua, Wang Pengfei, Zhang Zhao, et al. Fast identification of field weeds based on deep convolutional network and binary Hash code [J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(11): 30-38. [15] 刘庆飞, 张宏立, 王艳玲. 基于深度可分离卷积的实时农业图像逐像素分类研究[J]. 中国农业科学, 2018, 51(19): 3673-3682. Liu Qingfei, Zhang Hongli, Wang Yanling. Realtime pixelwise classification of agricultural images based on depthwise separable convolution [J]. Scientia Agricultura Sinica, 2018, 51(19): 3673-3682. [16] 卢丽强, 郑思泽, 肖倾城, 等. 面向卷积神经网络的FPGA设计[J]. 中国科学(信息科学), 2019, 49(3): 277-294. Lu Liqiang, Zheng Size, Xiao Qingcheng, et al. Accelerating convolutional neural networks on FPGA [J]. Scientia Sinica (Informationis), 2019, 49(3): 277-294. [17] 王超, 王腾, 马翔, 等. 基于FPGA的机器学习硬件加速研究进展[J]. 计算机学报, 2020, 43(6): 1161-1182. Wang Chao, Wang Teng, Ma Xiang, et al. Research progress on FPGA-based machine hardware acceleration [J]. Chinese Journal of Computers, 2020, 43(6): 1161-1182. [18] Olsen A, Konovalov D A, Philippa B, et al. DeepWeeds: A multiclass weed species image dataset for deep learning [J]. Scientific Reports, 2019, 9(1): 2058. [19] Suh H K, Ijsselmuiden J, Hofstee J W, et al. Transfer learning for the classification of sugar beet and volunteer potato under field conditions [J]. Biosystems Engineering, 2018, 174: 50-65. [20] 刘亚田. 基于深度学习的玉米幼苗与杂草辨识研究[D]. 哈尔滨: 哈尔滨工业大学, 2019. Liu Yatian. Research on identification of maize seedlings and weeds based on deep learning [D]. Harbin: Harbin Institute of Technology, 2019. [21] 张茹飞. 基于低空遥感的杂草识别及定位方法研究[D]. 杨凌: 西北农林科技大学, 2020. Zhang Rufei. Weed identification and location based on low altitude remote sensing [D]. Yangling: Northwest A & F University, 2020. [22] Alessandro D, Freitas D M, Gercina G, et al. Weed detection in soybean crops using ConvNets [J]. Computers and Electronics in Agriculture, 2017, 143: 314-324. [23] Sudars K, Jasko J, Namatevs I, et al. Dataset of annotated food crops and weed images for robotic computer vision control [J]. Data in Brief, 2020, 31: 105833. [24] 贾少鹏, 高红菊, 杭潇. 基于深度学习的农作物病虫害图像识别技术研究进展[J]. 农业机械学报, 2019, 50(S1): 313-317. Jia Shaopeng, Gao Hongju, Hang Xiao. Research progress on image recognition technology of crop pests and diseases based on deep learning [J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(S1): 313-317. [25] Suk H. An introduction to neural networks and deep learning [M]. Academic Press, 2017. [26] 吴艳霞, 梁楷, 刘颖, 等. 深度学习FPGA加速器的进展与趋势[J]. 计算机学报, 2019, 42(11): 2461-2480. Wu Yanxia, Liang Kai, Liu Ying, et al. The progress and trends of FPGA-Based accelerators in deep learning [J]. Chinses Journal of Computers, 2019, 42(11): 2461-2480. [27] Simonyan K, Zisserman A. Very deep convolutional networks for largescale image recognition [J]. Computer Science, 2015. [28] Szegedy C, Liu Wei, Jia Yangqing, et al. Going deeper with convolutions [C]. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2015. [29] He K, Zhang X, Ren S, et al. Deep residual learning for image recognition [C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2016. [30] Abdalla A, Cen H, Wan L, et al. Finetuning convolutional neural network with transfer learning for semantic segmentation of groundlevel oilseed rape images in a field with high weed pressure [J]. Computers and Electronics in Agriculture, 2019, 167: 105091. [31] 林景栋, 吴欣怡, 柴毅, 等. 卷积神经网络结构优化综述[J]. 自动化学报, 2020, 46(1): 24-37. Lin Jingdong, Wu Xinyi, Chai Yi, et al. Structure optimization of convolutional neural networks: A survey [J]. Acta Automatica Sinica, 2020, 46(1): 24-37. [32] 张慧, 王坤峰, 王飞跃. 深度学习在目标视觉检测中的应用进展与展望[J]. 自动化学报, 2017, 43(8): 1289-1305. Zhang Hui, Wang Kunfeng, Wang Feiyue. Advances and perspectives on applications of deep learning in visual object detection [J]. Acta Automatica Sinica, 2017, 43(8): 1289-1305. [33] Ren S, He K, Girshick R, et al. Faster R-CNN: Towards realtime object detection with region proposal networks [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-49. [34] Liu W, Anguelov D, Erhan D, et al. SSD: Single shot multibox detector [J]. arXiv: 1512.02325, 2016. [35] Redmon J, Divvala S, Girshick R, et al. You Only Look Once: Unified, realtime object detection [J]. arXiv:1506.02640, 2016. [36] 孟庆宽, 张漫, 杨晓霞, 等. 基于轻量卷积结合特征信息融合的玉米幼苗与杂草识别[J]. 农业机械学报, 2020, 51(12): 238-245, 303. Meng Qingkuan, Zhang Man,Yang Xiaoxia, et al. Recognition of maize seedling and weed based on light weight convolution and feature fusion [J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(12): 238-245, 303. [37] 樊湘鹏, 周建平, 许燕, 等. 基于优化Faster R-CNN的棉花苗期杂草识别与定位[J]. 农业机械学报, 2021, 52(5): 26-34. Fan Xiangpeng, Zhou Jianping, Xu Yan, et al. Identification and localization of weeds based on optimized faster R-CNN in cotton seedling stage [J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(5): 26-34. [38] 薛金利, 戴建国, 赵庆展, 等. 基于低空无人机影像和YOLOv3实现棉田杂草检测[J]. 石河子大学学报(自然科学版), 2019, 37(1): 21-27. Xue Jinli, Dai Jianguo, Zhao Qingzhan, et al. Cotton field weed detection based on lowaltitude drone image and YOLOv3 [J]. Journal of Shihezi University (Natural Science), 2019, 37(1): 21-27. [39] 李春明, 逯杉婷, 远松灵, 等. 基于Faster R-CNN的除草机器人杂草识别算法[J]. 中国农机化学报, 2019, 40(12): 171-76. Li Chunming, Lu Shanting, Yuan Songling, et al. Weed identification algorithm of weeding robot based on Faster R-CNN [J]. Journal of Chinese Agricultural Mechanization, 2019, 40(12): 171-176. [40] 梁新宇, 罗晨, 权冀川, 等. 基于深度学习的图像语义分割技术研究进展[J]. 计算机工程与应用, 2020, 56(2): 18-28. Liang Xinyu, Luo Chen, Quan Jichuan, et al. Research on progress of image semantic segmentation based on deep learning [J]. Computer Engineering and Applications, 2020, 56(2): 18-28. [41] Asad M H, Bais A. Weed detection in canola fields using maximum likelihood classification and deep convolutional neural network [J]. Information Processing in Agriculture, 2020, 7(4): 535-545. [42] 孙俊, 谭文军, 武小红, 等. 多通道深度可分离卷积模型实时识别复杂背景下甜菜与杂草[J]. 农业工程学报, 2019, 35(12): 184-190. Sun Jun, Tan Wenjun, Wu Xiaohong, et al. Realtime recognition of sugar beet and weeds in complex backgrounds using multichannel depthwise separable convolution model [J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(12): 184-190. [43] You J, Liu W, Lee J. A DNN-based semantic segmentation for detecting weed and crop [J]. Computers and Electronics in Agriculture, 2020, 178: 105750. [44] Potena C, Nardi D, Pretto A. Fast and accurate crop and weed identification with summarized train sets for precision agriculture [J]. Advances in Intelligent Systems and Computing, 2017, 531: 105-121. [45] He K, Gkioxari G, Dollár P, et al. Mask R-CNN [C]. 2017 IEEE International Conference on Computer Vision (ICCV), 2017. [46] 权龙哲, 吴冰, 毛首人. 基于Mask R-CNN农田杂草实例分割与叶龄识别方法[J]. 东北农业大学学报, 2021, 52(4): 65-76. Quan Longzhe, Wu Bing, Mao Shouren. Method for segmentation and leaf age recognition of farmland weeds based on Mask R-CNN [J]. Journal of Northeast Agricultural University, 2021, 52(4): 65-76. [47] 姜红花, 张传银, 张昭, 等. 基于Mask R-CNN的玉米田间杂草检测方法[J]. 农业机械学报, 2020, 51(6): 220-228, 247. Jiang Honghua, Zhang Chuanyin, Zhang Zhao, et al. Detection method of corn weed based on Mask R-CNN [J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(6): 220-228, 247. [48] 赵轶, 刘堂友. 基于卷积神经网络的田间杂草识别方法研究[J]. 计算机仿真, 2019, 36(4): 440-444. Zhao Yi, Liu Tangyou. Research of field weeds identification on convolutional neural network [J]. Computer Simulation, 2019, 36(4): 440-444. [49] 王术波, 韩宇, 陈建, 等. 基于深度学习的无人机遥感生态灌区杂草分类[J]. 排灌机械工程学报, 2018, 36(11): 1137-1141. Wang Shubo, Han Yu, Chen Jian, et al. Weed classification of remote sensing by UAV in ecological irrigation areas based on deep learning [J]. Journal of Drainage and Irrigation Machinery Engineering, 2018, 36(11): 1137-1141. [50] Andrea C, Daniel B B M, Misael J B J. Precise weed and maize classification through convolutional neuronal networks [C]. 2017 IEEE Second Ecuador Technical Chapters Meeting (ETCM), 2017. [51] Hu K, Coleman G, Zeng S, et al. Graph weeds net: A graphbased deep learning method for weed recognition [J]. Computers and Electronics in Agriculture, 2020, 174: 105520. [52] 徐艳蕾, 何润, 翟钰婷, 等. 基于轻量卷积网络的田间自然环境杂草识别方法[J]. 吉林大学学报(工学版), 2021, 51(6): 2304-2312. Xu Yanlei, He Run, Zhai Yuting, et al. Weed identification method based on deep transfer learning in field natural environment [J]. Journal of Jilin University (Engineering and Technology Edition), 2021, 51(6): 2304-2312. [53] Ahmad A, Saraswat D, Aggarwal V, et al. Performance of deep learning models for classifying and detecting common weeds in corn and soybean production systems [J]. Computers and Electronics in Agriculture, 2021, 184: 106081. [54] Jiang H, Zhang C, Qiao Y, et al. CNN feature based graph convolutional network for weed and crop recognition in smart farming [J]. Computers and Electronics in Agriculture, 2020, 174: 105450. [55] 王生生, 王顺, 张航, 等. 基于轻量和积网络及无人机遥感图像的大豆田杂草识别[J]. 农业工程学报, 2019, 35(6): 81-89. Wang Shengsheng, Wang Shun, Zhang Hang, et al. Soybean field weed recognition based on light sumproduct networks and UAV remote sensing images [J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(6): 81-89. [56] 王宝聚, 兰玉彬, 陈蒙蒙, 等. 机器学习在无人农场中的应用现状与展望[J]. 中国农机化学报, 2021, 42(10): 186-192, 217. Wang Baoju, Lan Yubin, Chen Mengmeng, et al. Application status and prospect of machine learning in unmanned farm [J]. Journal of Chinese Agricultural Mechanization, 2021, 42(10): 186-192, 217. [57] 苏丽, 孙雨鑫, 苑守正. 基于深度学习的实例分割研究综述[J]. 智能系统学报, 2022, 17(1): 16-31. Su Li, Sun Yuxin, Yuan Shouzheng. A survey of instance segmentation research based on deep learning [J]. CAAI Transactions on Intelligent Systems, 2022, 17(1): 16-31. [58] Ding J, Huang Y, Liu W, et al. Severely blurred object tracking by learning deep image representations [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2015, 26(2): 319-331. |
[1] | Li Ming, , Ding Zhihuan, , Zhao Jingxuan, Chen Siming, Li Wenyong, Yang Xinting. Detection method for cucumber downy mildew #br# #br# sporangia in a solar greenhouse based on improved YOLOv5s#br# [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(5): 63-70. |
[2] | Yang Chenglei, , Lan Yubin, , Wang Qingyu, , Bie Xiaoting, , Shan Changfeng, , Wang Guobin, . Application of neural network in greenhouse microclimate prediction [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(5): 89-99. |
[3] | Liu Shikun, , Jin Chengqian, Chen Man, Yang Tengxiang, Xu Jinshan. Online detection method of detecting crushing rate of soybean harvesters based on DeepLabV3+ network [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(5): 170-175. |
[4] | Wang Lei, Yuan Ying, Gao Ling. Tomato disease image recognition based on an improved multiverse optimizer algorithm [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(5): 176-181. |
[5] | Wang Jiancui, Hui Qiaojuan, Wu Liguo. Field weeds detection based on multiscale attention and depth separable convolution [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(5): 182-187. |
[6] | Duan Yufei, , Dong Geng, Sun Jiwei, Wang Yanqing, . Sorting model of camellia fruit shells and tea seeds based on SE-ResNet network [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(4): 89-95. |
[7] | Li Yanzhou, He Yanzhou, , Qin Feng, , Qian Wanqiang, Wu Mei, Qiao Xi, . Identification of Spartina alterniflora based on convolutional neural network [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(4): 159-166. |
[8] | Deng Xiangwu, Liang Song, Qi Long, Yu Shuting. Method study on semantic segmentation of weeds at seedling stage in paddy fields based on DeepLabV3+ model [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(4): 174-180. |
[9] | Xuan Menghui, Zhao Sixia, Xu Liyou, Chen Xiaoliang, Li Tuanfei. Assembly quality inspection method of combine harvester based on improved VMD and LSTM [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(3): 132-140. |
[10] | Wang Xinyan, Yi Zhengyang.. Research on obstacle detection method of mowing robot working environment based on improved YOLOv5 [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(3): 171-176. |
[11] | He Yushuang, Wang Zhuo, Wang Xiangping, Xiao Jin, Luo Youyi, Zhang Junfeng.. Research progress of deep learning in crop disease image recognition [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(2): 148-155. |
[12] | Chen Wen, Yu Kang, Li Yanzhou, Chen Yuanling, Hu Shanshan, Qiao Xi.. Recognition of sugarcane stem node based on network slimming algorithm and YOLOv4-tiny algorithm [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(2): 172-181. |
[13] | Ren Hao, Li Li, Lu Shibo, Chen Jingyao, Zhang Yunfeng.. Identification method of mulberry tree branches in complex natural environments based on deep learning [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(2): 182-188. |
[14] | Yang Wenji, Hu Wenchao, Zhao Yingding, Qian Wenbin.. Research on plant disease detection algorithm based on improved Yolov5 [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(1): 108-115. |
[15] | Dong Xiuchun, Jiang Yi, Yang Yuting, Guo Tao, Li Zongnan, Li Zhangcheng.. Spatial information extraction of citrus orchard based on semantic segmentation model and remote sensing [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(1): 178-184. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Journal of Chinese Agricultural Mechanization
Address:100 Liuying, Zhongshan Menwai, Xuanwu District, Nanjing Code: Tel: 025-84346270,84346296