Journal of Chinese Agricultural Mechanization ›› 2023, Vol. 44 ›› Issue (5): 182-187.DOI: 10.13733/j.jcam.issn.2095-5553.2023.05.025
Previous Articles Next Articles
Wang Jiancui1, Hui Qiaojuan2, Wu Liguo3
Online:
2023-05-15
Published:
2023-06-02
王建翠1,惠巧娟2,吴立国3
基金资助:
CLC Number:
Wang Jiancui, Hui Qiaojuan, Wu Liguo. Field weeds detection based on multiscale attention and depth separable convolution[J]. Journal of Chinese Agricultural Mechanization, 2023, 44(5): 182-187.
王建翠, 惠巧娟, 吴立国. 基于多尺度注意力和深度可分离卷积的农田杂草检测[J]. 中国农机化学报, 2023, 44(5): 182-187.
[1] 徐可, 李怀民, 曹卫星. 基于RGB-D多源图像融合的农田麦草识别方法研究[C]. 第十九届中国作物学会学术年会, 2020. [2] 李雪, 顾莉丽, 李瑞. 我国粮食主产区粮食生产生态效率评价研究[J]. 中国农机化学报, 2022, 43(2): 205-213. Li Xue, Gu Lili, Li Rui. Study on evaluation of ecoefficiency of grain production in major grainproducing areas of China [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(2): 205-213. [3] 刘莫尘, 高甜甜, 马宗旭, 等. 融合MSRCR算法和YOLOv4-tiny的田间环境玉米杂草目标检测模型[J]. 农业机械学报, 2022, 53(2): 246-255, 335. Liu Mochen, Gao Tiantian, Ma Zongxu, et al. Target detection model of corn weeds in field environment combining MSRCR algorithm and YOLOv4-tiny [J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(2): 246-255, 335. [4] 杨涛, 李晓晓. 机器视觉技术在现代农业生产中的研究进展[J]. 中国农机化学报, 2021, 42(3): 171-181. Yang Tao, Li Xiaoxiao. Research progress of machine vision technology in modern agricultural production [J]. Journal of Chinese Agricultural Mechanization, 2021, 42(3): 171-181. [5] 袁洪波, 赵努东, 程曼. 基于图像处理的田间杂草识别研究进展与展望[J]. 农业机械学报, 2020, 51(S2): 323-334. Yuan Hongbo, Zhao Nudong, Cheng Man. Review of weeds recognition based on image processing [J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(S2): 323-334. [6] Fang Fen, Li Liyuan, Zhu Hongyuan. Combining faster R-CNN and modeldriven clustering for elongated object detection [J]. IEEE Transactions on Image Processing, 2020, 29(1): 2052-2065. [7] Quan Longzhe, Wu Bing, Mao Shouren. An instance segmentationbased method to obtain the leaf age and plant centre of weeds in complex field environments [J]. Sensors, 2021, 21(10): 3389. [8] 张学军, 黄爽, 靳伟. 基于改进Faster R-CNN的农田残膜识别方法[J]. 湖南大学学报(自然科学版), 2021, 48(8): 161-168. Zhang Xuejun, Huang Shuang, Jin Wei. Identification method of agricultural film residue based on improved Faster R-CNN [J]. Journal of Hunan University (Natural Sciences), 2021, 48(8): 161-168. [9] 李开敬, 许燕, 周建平, 等. 基于Faster R-CNN和数据增强的棉田苗期杂草识别方法[J]. 新疆大学学报(自然科学版), 2021, 38(4): 450-456. Li Kaijing, Xu Yan, Zhou Jianping, et al. Cotton field seedling weed identification method based on Faster R-CNN and data enhancement [J]. Journal of Xinjiang University (Natural Science Edition in Chinese and English), 2021, 38(4): 450-456. [10] 亢洁, 刘港, 郭国法. 基于多尺度融合模块和特征增强的杂草检测方法[J]. 农业机械学报, 2022, 53(4): 254-260. Kang Jie, Liu Gang, Guo Guofa. Weed detection based on multiscale fusion module and feature enhancement [J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(4): 254-260. [11] 孙俊, 何小飞, 谭文军. 空洞卷积结合全局池化的卷积神经网络识别作物幼苗与杂草[J]. 农业工程学报, 2018, 34(11): 159-165. Sun Jun, He Xiaofei, Tan Wenjun. Recognition of crop seedling and weed recognition based on dilated convolution and global pooling in CNN [J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(11): 159-165. [12] 李彧, 余心杰, 郭俊先. 基于全卷积神经网络方法的玉米田间杂草识别[J]. 江苏农业科学, 2022, 50(6): 93-100. [13] 温德圣, 许燕, 周建平. 自然光照影响下基于深度卷积神经网络和颜色迁移的杂草识别方法[J]. 中国科技论文, 2020, 15(3): 287-292. Wen Desheng, Xu Yan, Zhou Jianping. Weed identification method based on deep convolutional neural network and color migration under the influence of natural illumination [J]. China Sciencepaper, 2020, 15(3): 287-292. [14] 樊湘鹏, 周建平, 许燕. 基于优化Faster R-CNN的棉花苗期杂草识别与定位[J]. 农业机械学报, 2021, 52(5): 26-34. Fan Xiangpeng, Zhou Jianping, Xu Yan. Identification and localization of weeds based on optimized Faster R-CNN in cotton seedling stage [J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(5): 26-34. [15] Fu Lifang, Lü Xingchen, Wu Qiufeng. Field weed recognition based on an improved VGG with inception module [J]. International Journal of Agricultural and Environmental Information Systems, 2020, 11(2): 1-13. [16] Jiang Honghua, Zhang Chuanyin, Qiao Yongliang. CNN feature based graph convolutional network for weed and crop recognition in smart farming [J]. Computers and Electronics in Agriculture, 2020, 174: 105450. [17] Qin Yueyan, Cao Jiangtao, Ji Xiaofei. Fire detection method based on depthwise separable convolution and YOLOv3 [J]. International Journal of Automation and Computing, 2021, 18(2): 300-310. [18] Farooq A, Hu Jiankun, Jia Xiuping. Analysis of spectral bands and spatial resolutions for weed classification via deep convolutional neural network [J]. IEEE Geoscience and Remote Sensing Letters, 2019, 16(2): 183-187. [19] Vaswani A, Shazeer N, Parmar N. Attention is all you need [J]. Advances in Neural Information Processing Systems, 2017. [20] Zang Haixiang, Xu Ruiqi, Cheng Lilin. Residential load forecasting based on LSTM fusing selfattention mechanism with pooling [J]. Energy, 2021, 229: 148-156. |
[1] | Li Ming, , Ding Zhihuan, , Zhao Jingxuan, Chen Siming, Li Wenyong, Yang Xinting. Detection method for cucumber downy mildew #br# #br# sporangia in a solar greenhouse based on improved YOLOv5s#br# [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(5): 63-70. |
[2] | Zhou Xianqin, Han Zhenyu, Liu Chengyuan. Silkworm cocoon identification method based on improved convolution neural network and image processing [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(5): 100-106. |
[3] | Xu Yanxiang, Zhang Jingzhi, Lan Yubin, , Sun Yuemei, Han Xin, Bai Jingbo. Research progress of early crop disease identification based on infrared thermal imaging and machine learning [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(5): 188-197. |
[4] | Fu Hao, , Zhao Xueguan, Zhai Changyuan, , Zheng Kang, Zheng Shenyu, Wang Xiu. Research progress on weed recognition method based on deep learning technology [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(5): 198-207. |
[5] | Kuang Da, Duan Lingfeng. Global research and development trend of automated crop phenotyping from patent perspective [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(5): 223-229. |
[6] | Duan Yufei, , Dong Geng, Sun Jiwei, Wang Yanqing, . Sorting model of camellia fruit shells and tea seeds based on SE-ResNet network [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(4): 89-95. |
[7] | Chen Peng, , Ma Zihan, Zhang Jun, Xia Yi, Wang Bing, Liang Dong. Semantic segmentation network based on attention mechanism for wheat FHB [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(4): 145-152. |
[8] | Li Guangming, Gong Haobin, Yuan Kai. Research on lightweight pepper cluster detection based on YOLOv5s [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(4): 153-158. |
[9] | Li Yanzhou, He Yanzhou, , Qin Feng, , Qian Wanqiang, Wu Mei, Qiao Xi, . Identification of Spartina alterniflora based on convolutional neural network [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(4): 159-166. |
[10] | Wang Yubo, , Ma Tinghuai, Chen Guangming. Weeds detection in farmland based on a modified YOLOv5 algorithm [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(4): 167-173. |
[11] | Hui Qiaojuan, Ma Wei, Bian Chao. Agricultural weeds recognition method based on enhanced attention mechanism [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(4): 195-201. |
[12] | Luo Shan, Hou Juntao, Zheng Bin. Automatic grading method of pomegranate quality based on machine vision [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(3): 117-122. |
[13] | Wang Xinyan, Yi Zhengyang.. Research on obstacle detection method of mowing robot working environment based on improved YOLOv5 [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(3): 171-176. |
[14] | Wang Gen, Jiang Xiaoming, Huang Feng, Fang Di, Zhang Yuqin. An algorithm for localizing tea bushes and green weeds based on improved YOLOv3 network model [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(3): 199-207. |
[15] | Lu Ding, Wang Weibing, Han Shuai. Cosimulation study and experiment on motion control of seedling picking manipulator [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(2): 8-13. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Journal of Chinese Agricultural Mechanization
Address:100 Liuying, Zhongshan Menwai, Xuanwu District, Nanjing Code: Tel: 025-84346270,84346296