Journal of Chinese Agricultural Mechanization ›› 2023, Vol. 44 ›› Issue (5): 89-99.DOI: 10.13733/j.jcam.issn.2095-5553.2023.05.012
Previous Articles Next Articles
Yang Chenglei1, 2, Lan Yubin1, 2, Wang Qingyu1, 2, Bie Xiaoting1, 2, Shan Changfeng1, 2, Wang Guobin1, 2
Online:
2023-05-15
Published:
2023-06-02
杨承磊1, 2,兰玉彬1, 2,王庆雨1, 2,别晓婷1, 2,单常峰1, 2,王国宾1, 2
基金资助:
CLC Number:
Yang Chenglei, , Lan Yubin, , Wang Qingyu, , Bie Xiaoting, , Shan Changfeng, , Wang Guobin, . Application of neural network in greenhouse microclimate prediction[J]. Journal of Chinese Agricultural Mechanization, 2023, 44(5): 89-99.
杨承磊, 兰玉彬, 王庆雨, 别晓婷, 单常峰, 王国宾, . 神经网络在温室小气候预测中的应用[J]. 中国农机化学报, 2023, 44(5): 89-99.
[1] Iga J L. Modeling of the climate for a greenhouse in the NorthEast of México[J]. IFAC Proceedings Volumes, 2008, 41(2): 9558-9563. [2] De Gelder A, Dieleman J A, Bot G P A, et al. An overview of climate and crop yield in closed greenhouses [J]. The Journal of Horticultural Science and Biotechnology, 2012, 87(3): 193-202. [3] Frausto H U, Pieters J G. Modelling greenhouse temperature using system identification by means of neural networks [J]. Neurocomputing, 2004, 56: 423-428. [4] 蒋勇翔, 秦琳琳, 石春, 等. 基于机理模型的现代温室湿度系统建模[J]. 江南大学学报(自然科学版), 2013, 12(5): 535-540. Jiang Yongxiang, Qin Linlin, Shi Chun, et al. Modern greenhouse humidity system modeling based on mechanism model [J]. Journal of Jiangnan University (Natural Science Edition), 2013, 12(5): 535-540. [5] 陈俐均, 杜尚丰, 李嘉鹏, 等. 温室环境温度预测自适应机理模型参数在线识别方法[J]. 农业工程学报, 2017, 33(S1): 315-321. Chen Lijun, Du Shangfeng, Li Jiapeng, et al. Online identification method of parameters for greenhouse temperature prediction selfadapting mechanism model [J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(S1): 315-321. [6] 束慧. 基于物联网和模糊PID技术的温室智能监控系统[J]. 节水灌溉, 2014(11): 73-76. Shu hui. Intelligent greenhouse monitoring and control system based on internet of things and fuzzy PID technology [J]. Water Saving Irrigation, 2014(11): 73-76. [7] 杨学坤, 韩柏和, 蒋晓. 日光温室系统模型的研究现状与对策[J]. 中国农机化学报, 2017, 38(4): 42-48. Yang Xuekun, Han Baihe, Jiang Xiao. Research status and countermeasures of solar greenhouse system model [J]. Journal of Chinese Agricultural Mechanization, 2017, 38(4): 42-48. [8] FitzRodríguez E, Kubota C, Giacomelli G A, et al. Dynamic modeling and simulation of greenhouse environments under several scenarios: A webbased application [J]. Computers and Electronics in Agriculture, 2010, 70(1): 105-116. [9] Joudi K A, Farhan A A. A dynamic model and an experimental study for the internal air and soil temperatures in an innovative greenhouse[J]. Energy Conversion and Management, 2015, 91: 76-82. [10] Lopez A, Valera D L, MolinaAiz F D, et al. Sonic anemometry to evaluate airflow characteristics and temperature distribution in empty Mediterranean greenhouses equipped with padfan and fog systems [J]. Biosystems Engineering, 2012, 113(4): 334-350. [11] Jiang Y, Qin L, Qiu Q, et al. Greenhouse humidity system modeling and controlling based on mixed logical dynamical [C]. Proceedings of the 33rd Chinese Control Conference. IEEE, 2014: 4039-4043. [12] Yang S H, Lee C G, AshtianiAraghi A, et al. Development and evaluation of combustiontype CO2 enrichment system connected to heat pump for greenhouses [J]. Engineering in Agriculture, Environment and Food, 2014, 7(1): 28-33. [13] Umeda H, Ahn D H, Iwasaki Y, et al. A cooling and CO2 enrichment system for greenhouse production using CO2 clathrate hydrate[J]. Engineering in Agriculture, Environment and Food, 2015, 8(4): 307-312. [14] Azaza M, Echaieb K, Tadeo F, et al. Fuzzy decoupling control of greenhouse climate[J]. Arabian Journal for Science and Engineering, 2015, 40(9): 2805-2812. [15] VanegasAyala S C, BarónVelandia J, LealLara D D. A systematic review of greenhouse humidity prediction and control models using fuzzy inference systems[J]. Advances in HumanComputer Interaction, 2022, 2022: 1-16. [16] Lin D, Zhang L, Xia X. Hierarchical model predictive control of Venlotype greenhouse climate for improving energy efficiency and reducing operating cost [J]. Journal of Cleaner Production, 2020, 264: 121513. [17] Elanchezhian A, Basak J K, Park J, et al. Evaluating different models used for predicting the indoor microclimatic parameters of a greenhouse[J]. Applied Ecology and Environmental Research, 2020, 18(2): 2141-2161. [18] Su Y, Xu L. Towards discrete time model for greenhouse climate control[J]. Engineering in Agriculture, Environment and Food, 2017, 10(2): 157-170. [19] Hu H G, Xu L H, Wei R H, et al. RBF network based nonlinear model reference adaptive PD controller design for greenhouse climate[J]. Int. J. Adv. Comput. Technol, 2011, 3: 357-366. [20] Atia D M, Elmadany H T. Analysis and design of greenhouse temperature control using adaptive neurofuzzy inference system [J]. Journal of Electrical Systems and Information Technology, 2017, 4(1): 34-48. [21] Cunha J B, Couto C, Ruano A E B. Realtime parameter estimation of dynamic temperature models for greenhouse environmental control [J]. Control Engineering Practice, 1997, 5(10): 1473-1481. [22] Pohlheim H, Heiner A. Optimal control of greenhouse climate using a short time climate model and evolutionary algorithms [J]. IFAC Proceedings Volumes, 1997, 30(26): 113-118. [23] Coelho J P, de Moura Oliveira P B, Cunha J B. Greenhouse air temperature predictive control using the particle swarm optimisation algorithm [J]. Computers and Electronics in Agriculture, 2005, 49(3): 330-344. [24] Pión S, Camacho E F, Kuchen B, et al. Constrained predictive control of a greenhouse[J]. Computers and Electronics in Agriculture, 2005, 49(3): 317-329. [25] Ferreira P M, Faria E A, Ruano A E. Neural network models in greenhouse air temperature prediction[J]. Neurocomputing, 2002, 43(1-4): 51-75. [26] MárquezVera M A, RamosFernández J C, CereceroNatale L F, et al. Temperature control in a MISO greenhouse by inverting its fuzzy model [J]. Computers and Electronics in Agriculture, 2016, 124: 168-174. [27] Bennis N, Duplaix J, Enéa G, et al. Greenhouse climate modelling and robust control[J]. Computers and Electronics in Agriculture, 2008, 61(2): 96-107. [28] Arvanitis K G, Paraskevopoulos P N, Vernardos A A. Multirate adaptive temperature control of greenhouses [J]. Computers and Electronics in Agriculture, 2000, 26(3): 303-320. [29] Rhinehart R R. Nonlinear regression modeling for engineering applications: Modeling, model validation, and enabling design of experiments [M]. John Wiley & Sons, 2016. [30] Takakura T, Jordan K A, Boyd L L. Dynamic simulation of plant growth and environment in the greenhouse [J]. Transactions of the ASAE, 1971, 14(5): 964-0971. [31] Singh M C, Singh J P, Singh K G. Development of a microclimate model for prediction of temperatures inside a naturally ventilated greenhouse under cucumber crop in soilless media[J]. Computers and Electronics in Agriculture, 2018, 154: 227-238. [32] Choab N, Allouhi A, El Maakoul A, et al. Review on greenhouse microclimate and application: Design parameters, thermal modeling and simulation, climate controlling technologies [J]. Solar Energy, 2019, 191: 109-137. [33] Saberian A, Sajadiye S M. The effect of dynamic solar heat load on the greenhouse microclimate using CFD simulation [J]. Renewable Energy, 2019, 138: 722-737. [34] 周伟, 汪小旵. 温室温度约束模型预测控制研究[J]. 新疆农业科学, 2014, 51(6): 1015-1021. Zhou Wei, Wang Xiaochan. Constrained predictive control model for greenhouse temperature [J]. Xinjiang Agricultural Sciences, 2014, 51(6): 1015-1021. [35] Hui Z, Linlin Q, Gang W. Modeling and simulation of greenhouse temperature hybrid system based on ARMAX model [C]. 2017 36th Chinese Control Conference (CCC). IEEE, 2017: 2237-2241. [36] Samsuri S F M, Ahmad R, Hussein M. Identification and modeling of environmental climates inside naturally ventilated tropical greenhouse [C]. 2010 Fourth Asia International Conference on Mathematical/Analytical Modelling and Computer Simulation. IEEE, 2010: 402-407. [37] Jung D H, Kim H S, Jhin C, et al. Timeserial analysis of deep neural network models for prediction of climatic conditions inside a greenhouse[J]. Computers and Electronics in Agriculture, 2020, 173: 105402. [38] Salgado P, Cunha J B. Greenhouse climate hierarchical fuzzy modelling [J]. Control Engineering Practice, 2005, 13(5): 613-628. [39] Subahi A F, Bouazza K E. An intelligent IoT-based system design for controlling and monitoring greenhouse temperature [J]. IEEE Access, 2020, 8: 125488-125500. [40] Singh V K, Tiwari K N. Prediction of greenhouse microclimate using artificial neural network [J]. Appl. Ecol. Environ. Res, 2017, 15(1): 767-778. [41] Petrakis T, Kavga A, Thomopoulos V, et al. Neural network model for greenhouse microclimate predictions [J]. Agriculture, 2022, 12(6): 780. [42] Dariouchy A, Aassif E, Lekouch K, et al. Prediction of the intern parameters tomato greenhouse in a semiarid area using a timeseries model of artificial neural networks[J]. Measurement, 2009, 42(3): 456-463. [43] CastaedaMiranda A, Castao V M. Smart frost control in greenhouses by neural networks models [J]. Computers and Electronics in Agriculture, 2017, 137: 102-114 [44] Taki M, Ajabshirchi Y, Ranjbar S F, et al. Application of neural networks and multiple regression models in greenhouse climate estimation[J]. Agricultural Engineering International: CIGR Journal, 2016, 18(3): 29-43. [45] Moon T W, Jung D H, Chang S H, et al. Estimation of greenhouse CO2 concentration via an artificial neural network that uses environmental factors [J]. Horticulture Environment and Biotechnology, 2018, 59(1): 45-50. [46] He F, Ma C. Modeling greenhouse air humidity by means of artificial neural network and principal component analysis [J]. Computers and Electronics in Agriculture, 2010, 71: S19-S23. [47] Wang H, SánchezMolina J A, Li M, et al. Leaf area index estimation for a greenhouse transpiration model using external climate conditions based on genetics algorithms, backpropagation neural networks and nonlinear autoregressive exogenous models[J]. Agricultural Water Management, 2017, 183: 107-115. [48] 申超群, 杨静. 温室温度控制系统的RBF神经网络PID控制[J]. 控制工程, 2017, 24(2): 361-64. Shen Chaoqun, Yang Jing. RBF neural network PID control for greenhouse temperature control system [J]. Control Engineering of China, 2017, 24(2): 361-364. [49] Zeng S, Hu H, Xu L, et al. Nonlinear adaptive PID control for greenhouse environment based on RBF network[J]. Sensors, 2012, 12(5): 5328-5348. [50] Choi H, Moon T, Jung D H, et al. Prediction of air temperature and relative humidity in greenhouse via a multilayer perceptron using environmental factors[J]. Journal of BioEnvironment Control, 2019, 28(2): 95-103. [51] 张驰, 郭媛, 黎明. 人工神经网络模型发展及应用综述[J]. 计算机工程与应用, 2021, 57(11): 57-69. Zhang Chi, Guo Yuan, Li Ming. Review of development and application of artificial neural network models [J]. Computer Engineering and Applications, 2021, 57(11): 57-69. [52] Hongkang W, Li L, Yong W, et al. Recurrent neural network model for prediction of microclimate in solar greenhouse [J]. IFACPapers OnLine, 2018, 51(17): 790-795. [53] 张建超, 单慧勇, 景向阳, 等. 基于Elman神经网络的温室环境因子预测方法[J]. 中国农机化学报, 2021, 42(8): 203-208. Zhang Jianchao, Shan Huiyong, Jing Xiangyang, et al. Prediction method of greenhouse environment factors based on Elman neural network[J]. Journal of Chinese Agricultural Mechanization, 2021, 42(8): 203-208. [54] Oo S P Z Z, Phyu S. Cloud and IoT based temperature prediction system for a greenhouse using multivariate convolutional long short term memory network [J]. International Journal of Machine Learning and Computing, 2020, 10(1): 189-194. [55] Fourati F, Chtourou M. A greenhouse neural control using generalized and specialized learning[J]. Energy, 2011, 5: 7. [56] Gharghory S M. Deep network based on long shortterm memory for time series prediction of microclimate data inside the greenhouse[J]. International Journal of Computational Intelligence and Applications, 2020, 19(2): 2050013. [57] Ali A, Hassanein H S. TimeSeries prediction for sensing in smart greenhouses [C]. GLOBECOM 2020—2020 IEEE Global Communications Conference. IEEE, 2020: 1-6. [58] 李莉, 李文军, 马德新, 等. 基于LSTM的温室番茄蒸腾量预测模型研究[J]. 农业机械学报, 2021, 52(10): 369-376. Li Li, Li Wenjun, Ma Dexin, et al. Prediction model of transpiration of greenhouse tomato based on LSTM [J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(10): 369-376. [59] Liu Y, Li D, Wan S, et al. A long shortterm memorybased model for greenhouse climate prediction[J]. International Journal of Intelligent Systems, 2022, 37(1): 135-151. [60] Moon T, Son J E. Knowledge transfer for adapting pretrained deep neural models to predict different greenhouse environments based on a low quantity of data [J]. Computers and Electronics in Agriculture, 2021, 185: 106136. [61] Tan C, Sun F, Kong T, et al. A survey on deep transfer learning [C]. International Conference on Artificial Neural Networks. Springer, Cham, 2018: 270-279. [62] Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need [J]. Advances in Neural Information Processing Systems, 2017: 30. [63] Geng Y, Dong Y, Zhao L, et al. Desert locust plague monitoring using time series satellite data[J]. International Journal of Precision Agricultural Aviation, 2020, 3(4): 24-30. [64] Jin X B, Zheng W Z, Kong J L, et al. Deeplearning temporal predictor via bidirectional selfattentive encoderdecoder framework for IOTbased environmental sensing in intelligent greenhouse[J]. Agriculture, 2021, 11(8): 802. [65] Zhang K A, Qiang S Y, Liang Z X, et al. A greenhouse temperature prediction framework based on transformer neural network[C]. 2021 International Conference on Computer Information Science and Artificial Intelligence (CISAI). IEEE, 2021: 232-236. [66] Zhou H, Zhang S, Peng J, et al. Informer: Beyond efficient transformer for long sequence timeseries forecasting [C]. Proceedings of the AAAI Conference on Artificial Intelligence, 2021, 35(12): 11106-11115. [67] Rodríguez F, Arahal M R, Berenguel M. Application of artificial neural networks for greenhouse climate modelling [C]. 1999 European Control Conference (ECC). IEEE, 1999: 2096-2101. [68] Wang J, Han Y. Image inpainting algorithm based on convolutional neural network structure and improved Deep Image Prior[J]. International Journal of Precision Agricultural Aviation, 2020, 3(4): 65-73. [69] 李莉, 李伟, 耿磊, 等. 基于RF-GRU的温室番茄结果前期蒸腾量预测方法[J]. 农业机械学报, 2022, 53(3): 368-376. Li Li, Li Wei, Geng Lei, et al. Prediction method of greenhouse tomatoes transpiration in early fruiting stage based on RF-GRU [J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(3): 368-376. |
[1] | Li Ming, , Ding Zhihuan, , Zhao Jingxuan, Chen Siming, Li Wenyong, Yang Xinting. Detection method for cucumber downy mildew #br# #br# sporangia in a solar greenhouse based on improved YOLOv5s#br# [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(5): 63-70. |
[2] | Zhou Xianqin, Han Zhenyu, Liu Chengyuan. Silkworm cocoon identification method based on improved convolution neural network and image processing [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(5): 100-106. |
[3] | Liu Shikun, , Jin Chengqian, Chen Man, Yang Tengxiang, Xu Jinshan. Online detection method of detecting crushing rate of soybean harvesters based on DeepLabV3+ network [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(5): 170-175. |
[4] | Wang Lei, Yuan Ying, Gao Ling. Tomato disease image recognition based on an improved multiverse optimizer algorithm [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(5): 176-181. |
[5] | Fu Hao, , Zhao Xueguan, Zhai Changyuan, , Zheng Kang, Zheng Shenyu, Wang Xiu. Research progress on weed recognition method based on deep learning technology [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(5): 198-207. |
[6] | Duan Yufei, , Dong Geng, Sun Jiwei, Wang Yanqing, . Sorting model of camellia fruit shells and tea seeds based on SE-ResNet network [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(4): 89-95. |
[7] | Li Yanzhou, He Yanzhou, , Qin Feng, , Qian Wanqiang, Wu Mei, Qiao Xi, . Identification of Spartina alterniflora based on convolutional neural network [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(4): 159-166. |
[8] | Xuan Menghui, Zhao Sixia, Xu Liyou, Chen Xiaoliang, Li Tuanfei. Assembly quality inspection method of combine harvester based on improved VMD and LSTM [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(3): 132-140. |
[9] | Wang Xinyan, Yi Zhengyang.. Research on obstacle detection method of mowing robot working environment based on improved YOLOv5 [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(3): 171-176. |
[10] | Tong Min, Shi Changming, Ma Shanwei, Cui Yaru, Li Kai.. Research on biomass power generation prediction based on mutual information parameter optimization and BP neural networ [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(2): 126-131. |
[11] | He Yushuang, Wang Zhuo, Wang Xiangping, Xiao Jin, Luo Youyi, Zhang Junfeng.. Research progress of deep learning in crop disease image recognition [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(2): 148-155. |
[12] | Ren Hao, Li Li, Lu Shibo, Chen Jingyao, Zhang Yunfeng.. Identification method of mulberry tree branches in complex natural environments based on deep learning [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(2): 182-188. |
[13] | Li Huiyan, Zhang Shurong, Jiang Zhiwei.. Research on prewarning of fresh milk price fluctuation based on modern urban agriculture: A case study of Tianjin [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(2): 222-229. |
[14] | Yang Wenji, Hu Wenchao, Zhao Yingding, Qian Wenbin.. Research on plant disease detection algorithm based on improved Yolov5 [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(1): 108-115. |
[15] | Mao Xiaojuan, Bao Tong, Xun Guanglian, Li Decui, Wang Baojia, Ren Ni. Prediction of temperature in the greenhouse of vegetable growing based on GWO-LSTM [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(1): 116-123. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Journal of Chinese Agricultural Mechanization
Address:100 Liuying, Zhongshan Menwai, Xuanwu District, Nanjing Code: Tel: 025-84346270,84346296