Journal of Chinese Agricultural Mechanization ›› 2023, Vol. 44 ›› Issue (2): 112-118.DOI: 10.13733/j.jcam.issn.2095-5553.2023.02.016
Previous Articles Next Articles
Wu Junpeng, Huang Guangwen, Li Jun.
Online:
2023-02-15
Published:
2023-02-28
吴俊鹏1,黄光文1,李君1, 2
基金资助:
CLC Number:
Wu Junpeng, Huang Guangwen, Li Jun.. Research status and prospect of visual and spectral detection of fruit diseases[J]. Journal of Chinese Agricultural Mechanization, 2023, 44(2): 112-118.
吴俊鹏, 黄光文, 李君, . 水果病害视觉与光谱检测技术研究现状及展望[J]. 中国农机化学报, 2023, 44(2): 112-118.
[1] 郑永军, 陈炳太, 吕昊暾, 等. 中国果园植保机械化技术与装备研究进展[J]. 农业工程学报, 2020, 36(20): 110-124. Zheng Yongjun, Chen Bingtai, Lü Haotun, et al. Research progress of orchard plant protection mechanization technology and equipment in China [J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(20): 110-124. [2] 国家统计局. 中国统计年鉴-2021(总第40期)[M]. 北京: 中国统计出版社, 2021. [3] Ryan M R, Crews T E, Culman S W, et al. Managing for multifunctionality in perennial grain crops [J]. Bioscience, 2018, 68(4): 294-304. [4] 孔广辉, 冯迪南, 李雯, 等. 荔枝霜疫病的研究进展[J]. 果树学报, 2021, 38(4): 603-612. Kong Guanghui, Feng Dinan, Li Wen, et al. Research progress in studies on the downy blight disease in litchi [J]. Journal of Fruit Science, 2021, 38(4): 603-612. [5] 吴叶兰, 陈怡宇, 廉小亲, 等. 高光谱成像的柑橘病虫害叶片识别方法[J]. 光谱学与光谱分析, 2021, 41(12): 3837-3843. Wu Yelan, Chen Yiyu, Lian Xiaoqin, et al. Study on the identification method of citrus leaves based on hyperspectral imaging technique [J]. Spectroscopy and Spectral Analysis, 2021, 41(12): 3837-3843. [6] 张欣欣, 李跑, 余梅, 等. 柑橘近红外光谱无损检测技术研究进展[J]. 食品科学, 2022, 43(1): 260-268. Zhang Xinxin, Li Pao, Yu Mei, et al. Research progress of citrus nondestructive detection based on nearinfrared spectroscopy technology [J]. Food Science, 2022, 43(1): 260-268. [7] Xiao J, Chung P, Wu H, et al. Detection of strawberry diseases using a convolutional neural network [J]. Plants, 2021, 10(1): 31. [8] 刘小刚, 范诚, 李加念, 等. 基于卷积神经网络的草莓识别方法[J]. 农业机械学报, 2020, 51(2): 237-244. Liu Xiaogang, Fan Cheng, Li Jianian, et al. Identification method of strawberry based on convolutional neural network[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(2): 237-244. [9] 张佐经, 付新阳, 陈柯铭, 等. 融合密度与光谱特征的苹果霉心病无损检测方法研究[J]. 食品与发酵工业, 2022(15): 281-287. Zhang Zuojing, Fu Xinyang, Chen Keming, et al. Research on nondestructive detection method of moldy apple core by fusing density and spectral features[J]. Food and Fermentation Industries, 2022(15): 281-287. [10] Chandel A K, Khot L R, C B S. Apple powdery mildew infestation detection and mapping using highresolution visible and multispectral aerial imaging technique[J]. Scientia Horticulturae, 2021, 287: 110228. [11] 白雪冰, 余建树, 傅泽田, 等. 光谱成像技术在作物病害检测中的应用进展与趋势[J]. 光谱学与光谱分析, 2020, 40(2): 350-355. Bai Xuebing, Yu Jianshu, Fu Zetian, et al. Application of spectral imaging technology for detecting crop disease information: A review[J]. Spectroscopy and Spectral Analysis, 2020, 40(2): 350-355. [12] 乔世成, 田有文, 何宽, 等. 水果病虫害无损检测技术研究进展[J]. 食品科学, 2019, 40(11): 227-234. Qiao Shicheng, Tian Youwen, He Kuan, et al. Recent progress in technologies for nondestructive detection of fruit diseases and pests [J]. Food Science, 2019, 40(11): 227-234. [13] Ali M M, Bachik N A, Muhadi N A, et al. Nondestructive techniques of detecting plant diseases: A review [J]. Physiological and Molecular Plant Pathology, 2019, 108: 101426. [14] 康飞龙, 李佳, 刘涛, 等. 多类农作物病虫害的图像识别应用技术研究综述[J]. 江苏农业科学, 2020, 48(22): 22-27. Kang Feilong, Li Jia, Liu Tao, et al. Application technology of image recognition for various crop diseases and insect pests: A review [J]. Jiangsu Agricultural Sciences, 2020, 48(22): 22-27. [15] 邵彧, 张善文, 李萍, 等. 基于判别局部保持投影的苹果叶部病害识别方法[J]. 东北农业科学, 2021, 46(4): 113-118. Shao Yu, Zhang Shanwen, Li Ping, et al. Apple leaf disease recognition based on discriminant local preserving projection [J]. Journal of Northeast Agricultural Sciences, 2021, 46(4): 113-118. [16] Lee S H, Goau H, Bonnet P, et al. New perspectives on plant disease characterization based on deep learning [J]. Computers and Electronics in Agriculture, 2020, 170: 105220. [17] 弗朗索瓦·肖莱, 张亮. Python深度学习[M]. 北京: 人民邮电出版社, 2018. [18] 苏仕芳, 乔焰, 饶元, 等. 基于迁移学习的葡萄叶片病害识别及移动端应用[J]. 农业工程学报, 2021, 37(10): 127-134. Fang Shifang, Qiao Yan, Rao Yuan, et al. Recognition of grape leaf diseases and mobile application based on transfer learning [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(10): 127-134. [19] 李翠玲, 李余康, 谭昊然, 等. 基于Kmeans聚类和RF算法的葡萄霜霉病检测分级方法[J]. 农业机械学报, 2022, 53(5): 225-236. Li Cuiling, Li Yukang, Tan Haoran, et al. Grading detection method of grape downy mildew based on Kmeans clustering and random forest algorithm[J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(5): 225-236. [20] 帖军, 罗均, 郑禄, 等. 基于改进残差网络的柑橘病害识别[J]. 中南民族大学学报(自然科学版), 2021, 40(6): 621-630. Tie Jun, Luo Jun, Zheng Lu, et al. Citrus disease recognition based on improved residual network[J]. Journal of Southcentral Minzu University (Natural Science Edition), 2021, 40(6): 621-630. [21] Sharif M, Khan M A, Iqbal Z, et al. Detection and classification of citrus diseases in agriculture based on optimized weighted segmentation and feature selection [J]. Computers and Electronics in Agriculture, 2018, 150: 220-234. [22] 王云露, 吴杰芳, 兰鹏, 等. 基于改进Faster R-CNN的苹果叶部病害识别方法[J]. 林业工程学报, 2022, 7(1): 153-159. Wang Yunlu, Wu Jiefang, Lan Peng, et al. Apple disease identification using improved Faster R-CNN [J]. Journal of Forestry Engineering, 2022, 7(1): 153-159. [23] AbbaspourGilandeh Y, Aghabara A, Davari M, et al. Feasibility of using computer vision and artificial intelligence techniques in detection of some apple pests and diseases [J]. Applied Sciences, 2022, 12(2): 906. [24] Zhong Y, Zhao M. Research on deep learning in apple leaf disease recognition [J]. Computers and Electronics in Agriculture, 2020, 168: 105146. [25] Hasan R I, Yusuf S M, Alzubaidi L. Review of the state of the art of deep learning for plant diseases: A broad analysis and discussion [J]. Plants, 2020, 9(10): 1302. [26] 尚远航, 余游江, 吴刚, 等. 基于混合注意力机制的植物病害识别[J]. 塔里木大学学报, 2021, 33(2): 94-103. Shang Yuanhang, Yu Youjiang, Wu Gang, et al. Plant diseases recognition based on mixed attention mechanism [J]. Journal of Tarim University, 2021, 33(2): 94-103. [27] 肖伟, 冯全, 张建华, 等. 基于小样本学习的植物病害识别研究[J]. 中国农机化学报, 2021, 42(11): 138-143. Xiao Wei, Feng Quan, Zhang Jianhua, et al. Research on plant disease identification based on fewshot learning [J]. Journal of Chinese Agricultural Mechanization, 2021, 42(11): 138-143. [28] Afifi A, Alhumam A, Abdelwahab A. Convolutional neural network for automatic identification of plant diseases with limited data [J]. Plants, 2021, 10(1): 28. [29] Zhang N, Yang G, Pan Y, et al. A review of advanced technologies and development for hyperspectralbased plant disease detection in the past three decades [J]. Remote Sensing, 2020, 12(19): 3188. [30] 张建超, 张鹏, 田世平, 等. 苹果霉心病无损检测研究进展[J]. 包装工程, 2020, 41(1): 23-30. Zhang Jianchao, Zhang Peng, Tian Shiping, et al. Research progress in nondestructive detection technology of apple core rot [J]. Packaging Engineering, 2020, 41(1): 23-30. [31] Shu H, Sun W, Li K, et al. The cause for waterheart fruit of pineapple and protective measurements [J]. American Journal of Plant Sciences, 2019, 10(6): 885-892. [32] 张海辉, 陈克涛, 苏东, 等. 基于特征光谱的苹果霉心病无损检测设备设计[J]. 农业工程学报, 2016, 32(18): 255-262. Zhang Haihui, Chen Ketao, Su Dong, et al. Design of nondestructive detection device for moldy core in apples based on characteristic spectrum [J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(18): 255-262. [33] 徐赛, 陆华忠, 王旭, 等. 基于可见/近红外光谱的菠萝水心病无损检测[J]. 农业工程学报, 2021, 37(21): 287-294. Xu Sai, Lu Huazhong, Wang Xu, et al. Nondestructive detection method for pineapple water core based on visible/near infrared spectroscopy [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(21): 287-294. [34] Tian S, Zhang J, Zhang Z, et al. Effective modification through transmission Vis/NIR spectra affected by fruit size to improve the prediction of moldy apple core [J]. Infrared Physics & Technology, 2019, 100: 117-124. [35] 秦楷, 陈刚, 张剑一, 等. 苹果霉心病光谱在线检测的摆放姿态及建模方法优化研究[J]. 光谱学与光谱分析, 2021, 41(11): 3405-3410. Qin Kai, Chen Gang, Zhang Jianyi, et al. Optimization of fruit pose and modeling method for online spectral detection of apple moldy core [J]. Spectroscopy and Spectral Analysis, 2021, 41(11): 3405-3410. [36] 刘燕德, 肖怀春, 邓清, 等. 柑桔黄龙病近红外光谱无损检测[J]. 农业工程学报, 2016, 32(14): 202-208. Liu Yande, Xiao Huaichun, Deng Qing, et al. Nondestructive detection of citrus greening by near infrared spectroscopy [J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(14): 202-208. [37] 欧阳爱国, 刘晓龙, 李斌, 等. 基于激光诱导击穿光谱的柑橘叶片黄龙病检测[J]. 华中农业大学学报, 2022, 41(1): 255-261. Ouyang Aiguo, Liu Xiaolong, Li Bin, et al. Detecting Huanglongbing in citrus leaves based on laser induced breakdown spectroscopy [J]. Journal of Huazhong Agricultural University, 2022, 41(1): 255-261. [38] 温淑娴, 李绍稳, 金秀, 等. 基于高光谱的砀山酥梨炭疽病害等级分类研究[J]. 计算机科学, 2017, 44(S1): 216-219. Wen Shuxian, Li Shaowen, Jin Xiu, et al. Research on anthrax disease classification of Dangshan pear based on hyperspectral imaging technology [J]. Computer Science, 2017, 44(S1): 216-219. [39] 贾方方, 洪权春, 宋唯一, 等. 基于去包络线法的番茄叶霉病发病程度估测方法[J]. 中国生态农业学报, 2017, 25(6): 805-811. Jia Fangfang, Hong Quanchun, Song Weiyi, et al. Continuum removal method for monitoring Fulvia fulva morbidity using hyperspectral data [J]. Chinese Journal of EcoAgriculture, 2017, 25(6): 805-811. [40] 朱文静, 李林, 李美清, 等. 红外热成像与近红外光谱结合快速检测潜育期番茄花叶病[J]. 光谱学与光谱分析, 2018, 38(9): 2757-2762. Zhu Wenjing, Li Lin, Li Meiqing, et al. Rapid detection of tomato mosaic disease in incubation period by infrared thermal imaging and near infrared spectroscopy[J]. Spectroscopy and Spectral Analysis, 2018, 38(9): 2757-2762. [41] 张德荣, 方慧, 何勇, 等. 可见/近红外光谱图像在作物病害检测中的应用[J]. 光谱学与光谱分析, 2019, 39(6): 1748-1756. Zhang Derong, Fang Hui, He Yong, et al. Research of crop disease based on visible/Near infrared spectral image technology: A review[J]. Spectroscopy and Spectral Analysis, 2019, 39(6): 1748-1756. [42] Cherney J H, Digman M F, Cherney D J. Handheld NIRS for forage evaluation [J]. Computers and Electronics in Agriculture, 2021, 190: 106469. [43] 张昭, 王鹏, 姚志凤, 等. 基于多光谱荧光成像技术和SVM的葡萄霜霉病早期检测研究[J]. 光谱学与光谱分析, 2021(3): 828-834. Zhang Zhao, Wang Peng, Yao Zhifeng, et al. Early detection of downy mildew on grape leaves using multicolor fluorescence imaging and model SVM[J]. Spectroscopy and Spectral Analysis, 2021(3): 828-834. [44] Xie C, Lee W S. Detection of citrus black spot symptoms using spectral reflectance[J]. Postharvest Biology and Technology, 2021, 180: 111627. [45] Jiang Q, Wu G, Tian C, et al. Hyperspectral imaging for early identification of strawberry leaves diseases with machine learning and spectral fingerprint features[J]. Infrared Physics & Technology, 2021, 118: 103898. [46] Hou J, Li L, He J. Detection of grapevine leafroll disease based on 11-index imagery and ant colony clustering algorithm [J]. Precision Agriculture, 2016, 17(4): 488-505. [47] Xie C, Yang C, He Y. Hyperspectral imaging for classification of healthy and gray mold diseased tomato leaves with different infection severities [J]. Computers and Electronics in Agriculture, 2017, 135: 154-162. [48] Siedliska A, Baranowski P, Zubik M, et al. Detection of fungal infections in strawberry fruit by VNIR/SWIR hyperspectral imaging[J]. Postharvest Biology and Technology, 2018, 139: 115-126. [49] 楚秉泉, 章海亮, 罗微, 等. 柑橘真菌感染部位的高光谱成像快速检测[J]. 光谱学与光谱分析, 2017, 37(8): 2551-2555. Chu Bingquan, Zhang Hailiang, Luo Wei, et al. Nondestructive detecting rottenness defect of citrus by using hyperspectra imaging technology [J]. Spectroscopy and Spectral Analysis, 2017, 37(8): 2551-2555. [50] 何宽, 田有文, 乔世成, 等. 高光谱成像结合SIS与RFS的蓝莓腐烂病检测[J]. 发光学报, 2019, 40(3): 413-421. He Kuan, Tian Youwen, Qiao Shicheng, et al. Detection of rot blueberry disease by hyperspectral imaging with SIS and RFS [J]. Chinese Journal of Luminescence, 2019, 40(3): 413-421. |
[1] | Wang Chuntao, , , , Liang Weijian, Guo Qingwen, Zhong Hao, Gan Yu, Xiao Deqin, , . Review on computervisionbased detection of agricultural pests [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(7): 207-213. |
[2] | Xu Yanxiang, Zhang Jingzhi, Lan Yubin, , Sun Yuemei, Han Xin, Bai Jingbo. Research progress of early crop disease identification based on infrared thermal imaging and machine learning [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(5): 188-197. |
[3] | Yang Wenji, Hu Wenchao, Zhao Yingding, Qian Wenbin.. Research on plant disease detection algorithm based on improved Yolov5 [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(1): 108-115. |
[4] | Yin Changshan, Yang Linnan, Hu Haiyang.. Text detection of agricultural materials labels based on attention mechanism [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(10): 135-140. |
[5] | Guo Wenjuan, Feng Quan, Li Xiangzhou.. Research progress of convolutional neural network model based on crop disease detection and recognition [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(10): 157-166. |
[6] | Zhao Yue, Zhao Hui, Jiang Yongcheng, Ren Dongyue, Li Yang, Wei Yong.. Detection method of potato leaf diseases based on deep learning [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(10): 183-189. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Journal of Chinese Agricultural Mechanization
Address:100 Liuying, Zhongshan Menwai, Xuanwu District, Nanjing Code: Tel: 025-84346270,84346296