Journal of Chinese Agricultural Mechanization ›› 2023, Vol. 44 ›› Issue (2): 91-98.DOI: 10.13733/j.jcam.issn.2095-5553.2023.02.013
Previous Articles Next Articles
Li Jidong, Wang Qianghui.
Online:
2023-02-15
Published:
2023-02-28
李继东1,王强辉2
基金资助:
CLC Number:
Li Jidong, Wang Qianghui.. Temperature prediction algorithm for poultry house based on optimized feature subset selection and improved SVR[J]. Journal of Chinese Agricultural Mechanization, 2023, 44(2): 91-98.
李继东, 王强辉. 采用优化特征子集选取和改进SVR的养殖禽舍温度预测算法[J]. 中国农机化学报, 2023, 44(2): 91-98.
[1] 侯水生. 2018年度水禽产业发展现状、未来发展趋势与建议[J]. 中国畜牧杂志, 2019, 55(3): 124-128. [2] 徐宇, 冀荣华. 基于复数神经网络的智能温室温度预测研究[J]. 中国农机化学报, 2019, 40(4): 174-178. Xu Yu, Ji Ronghua. Research on temperature prediction of intelligent greenhouse based on complex neural network [J]. Journal of Chinese Agricultural Mechanization, 2019, 40(4): 174-178. [3] Nayak J, Naik B, Kanungo D P, et al. A hybrid elicit teaching learning based optimization with fuzzy cmeans algorithm for data clustering [J]. Ain Shams Engineering Journal, 2016. [4] 欧阳宏佳, 杨博, 陈文俊, 等. 养殖环境主要因子对肉鹅生长性能的影响[J]. 畜牧与兽医, 2019, 51(4): 34-38. Ouyang Hongjia, Yang Bo, Chen Wenjun, et al. Effects of main factors of breeding environment on growth performance of meat geese [J]. Animal Husbandry & Veterinary Medicine, 2019, 51(4): 34-38. [5] Xu Longqin, Liu Shuangyin, Li Diaoliang. Prediction of water temperature in prawn cultures based on a mechanism model optimized by an improved artificial bee colony [J]. Computers and Electronics in Agriculture, 2017(140): 397-408. [6] 徐龙琴, 张军, 李乾川, 等. 基于EMD和ELM的工厂化育苗水温组合预测模型[J]. 农业机械学报, 2016, 47(4):265-271. Xu Longqin, Zhang Jun, Li Qianchuan, et al. Combined prediction model of water temperature in industrialized cultivation based on empirical mode decomposition and extreme learning machine [J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(4): 265-271. [7] Graf R, Zhu Senlin, Sivakumar B. Forecasting river water temperature time series using a waveletneural network hybrid modelling approach [J]. Journal of Hydrology, 2019, 578: 1-12. [8] 王珺, 卫金茂, 张璐. 基于保留分类信息的多任务特征学习算法[J]. 计算机研究与发展, 2017, 54(3): 537-548. Wang Jun, Wei Jinmao, Zhang Lu. Multitask feature learning algorithm based on preserving classification information [J]. Journal of Computer Research and Development, 2017, 54(3): 537-548. [9] 杜晔, 张亚丹, 黎妹红, 等. 基于改进FastICA算法的入侵检测样本数据优化方法[J]. 通信学报, 2016, 37(1): 42-48. Du Ye, Zhang Yadan, Li Meihong, et al. Improved FastICA algorithm for data optimization processing in intrusion detection [J]. Journal on Communications, 2016, 37(1): 42-48 [10] 仇利克, 郭忠文, 刘青, 等. 基于冗余分析的特征选择算法[J]. 北京邮电大学学报, 2017, 40(1): 36-41. Qiu Like, Guo Zhongwen, Liu Qing,et al. Feature selection algorithm based on redundancy analysis [J]. Journal of Beijing University of Posts and Telecommunications, 2017, 40(1): 36-41. [11] 孙广路, 宋智超, 刘金来, 等. 基于最大信息系数和近似马尔科夫毯的特征选择方法[J]. 自动化学报, 2017, 43(5):795-805. Sun Guanglu,Song Zhichao,Liu Jinlai, et al. Feature selection method based on maximum information coefficient and approximate markov blanket [J]. Acta Automatica Sinica, 2017, 43(5): 795-805. [12] Teng Xianliang, Gao Zonghe, Zhang Yingyuan, et al. Key technologies and the implementation of wind, PV and storage cogeneration monitoring system [J]. Journal of Modern Power Systems and Clean Energy, 2014, 2(2): 104-113. [13] 叶林, 陈政, 赵永宁, 等. 基于遗传算法—模糊径向基神经网络的光伏发电功率预测模型[J]. 电力系统自动化, 2015, 39(16): 16-22. Ye Lin, Chen Zheng, Zhao Yongning, et al. Photovoltaic power forecasting model based on genetic algorithm and fuzzy radial basis function neural network [J]. Automation of Electric Power Systems, 2015, 39(16): 16-22. [14] 王昕, 黄柯, 郑益慧, 等. 基于PNN/PCA/SS-SVR的光伏发电功率短期预测方法[J]. 电力系统自动化, 2016, 40(17): 156-162. Wang Xin, Huang Ke, Zheng Yihui, et al. Shortterm forecasting method of photovoltaic output power based on PNN/ PCA/SS-SVR [J]. Automation of Electric Power Systems, 2016, 40(17): 156-162. [15] 陈英义, 程倩倩, 方晓敏, 等. 主成分分析和长短时记忆神经网络预测水产养殖水体溶解氧[J]. 农业工程学报, 2018, 34(17): 183-191. Chen Yingyi, Cheng Qianqian, Fang Xiaomin, et al. Principal component analysis and long shortterm memory neural network for predicting dissolved oxygen in water for aquaculture [J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 34(17): 183-191. [16] Mirjalili S, Mirjaliiis M, Lewis A. Grey wolf optimization [J]. Advances in Engineering Software, 2014, 69(7): 46-61. [17] 向子权, 杨家其, 李慧琳, 等. 基于离散灰狼算法的资源分配问题求解[J]. 华中科技大学学报(自然科学版), 2021, 49(8): 81-85. Xiang Ziquan, Yang Jiaqi, Li Huilin, et al. A solution to resource allocation problem based on discrete grey wolf optimizer [J]. Journal of Huazhong University of Science and Technology (Nature Science Edition), 2021, 49(8): 81-85. [18] 殷豪, 董朕, 陈云龙. 基于CEEMD和膜计算优化支持向量机的风速预测[J]. 电力系统保护与控制, 2017, 45(21): 27-34. Yin Hao, Dong Zhen, Chen Yunlong. Wind speed forecasting based on complementary ensemble empirical mode decomposition and support vector regression optimized by membrane computing optimization [J]. Power System Protection and Control, 2017, 45(21): 27-34. [19] Zhao Z, Wang L, Liu H, et al. On similarity preserving feature selection [J]. IEEE Transactions on Knowledge and Data Engineering, 2011, 25(3): 619-632. [20] 李怀俊, 谢小鹏. 基于核特征模糊聚类及模糊关联熵的齿轮故障模式识别[J]. 仪器仪表学报, 2015, 36(4): 848-855. Li Huaijun, Xie Xiaopeng. Gear fault pattern recognition based on kernel feature fuzzy clustering and fuzzy association entropy [J]. Chinese Journal of Scientific Instrument, 2015, 36(4): 848-855. [21] 刘双印, 黄建德, 徐龙琴, 等. 基于PCA-SVR-ARMA的狮头鹅养殖禽舍气温组合预测模型[J]. 农业工程学报, 2020, 36(11): 225-233. Liu Shuangyin, Huang Jiande, Xu Longqin, et al. Combined model for prediction of air temperature in poultry house for lionhead goose breeding based on PCA-SVR-ARMA [J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(11): 225-233. |
[1] | Sun Songli, Wen Hongyuan, Liu Binling, Zhong Jinyang, Mao Zhengxing. Design of intelligent sorting system of Pleurotus eryngii based on ROS and deep learning [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(8): 95-102. |
[2] | Shu Zhuo, , Chen Liping, , Chen Meixiang, Zhang Ruirui, Guo Xinyu, Wen Weiliang. 3D reconstruction system and precision evaluation of Hyphantria cunea (Drury) based on monocular and multiview images [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(8): 168-173. |
[3] | Gao Fangzheng, Tang Wenjun, Chen Guangming, , Huang Jiacai. Fast recognition of ripe tomato fruits in complex environment based on improved YOLOv3 [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(8): 174-183. |
[4] | Liu Min, Zhou Li. Apple disease leaf detection based on multiscale feature fusion network [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(8): 184-190. |
[5] | Yu Sheng, Xie Li. Research on plant disease identification based on transfer learning and convolutional vision transformer [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(8): 191-197. |
[6] | Dai Xiang, Song Haichao, Yu Linhui, Zeng Xiaoping, Ma Jinjun. Optimized design and experiment of the selfpropelled garlic drilling and fertilizing integrated machine [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(7): 16-25. |
[7] | Ma Li, Zhou Qiaoli, Zhao Liya, Hu Yuanhui. Classification and recognition of tomato leaf diseases based on deep learning [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(7): 187-193. |
[8] | Wang Chuntao, , , , Liang Weijian, Guo Qingwen, Zhong Hao, Gan Yu, Xiao Deqin, , . Review on computervisionbased detection of agricultural pests [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(7): 207-213. |
[9] | Li Ping, Ma Yukun, Li Yancui, Feng Jike, Zhao Mingfu. Study on wheat seed variety identification based on transfer learning [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(7): 220-228. |
[10] | Zhao Chengyue, , Ma Wei, Sudao Bilige, Tan Yu. Design of a following transport robot based on lidar and vision fusion [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(6): 176-181. |
[11] | Ge Xiang, Lu Jun, Cao Donglin, Jin Tianshu. Image segmentation of adhesive droplets based on contour solidness and watershed algorithm on leaves [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(6): 182-191. |
[12] | Li Ming, , Ding Zhihuan, , Zhao Jingxuan, Chen Siming, Li Wenyong, Yang Xinting. Detection method for cucumber downy mildew #br# #br# sporangia in a solar greenhouse based on improved YOLOv5s#br# [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(5): 63-70. |
[13] | Zhou Xianqin, Han Zhenyu, Liu Chengyuan. Silkworm cocoon identification method based on improved convolution neural network and image processing [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(5): 100-106. |
[14] | Wang Jiancui, Hui Qiaojuan, Wu Liguo. Field weeds detection based on multiscale attention and depth separable convolution [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(5): 182-187. |
[15] | Xu Yanxiang, Zhang Jingzhi, Lan Yubin, , Sun Yuemei, Han Xin, Bai Jingbo. Research progress of early crop disease identification based on infrared thermal imaging and machine learning [J]. Journal of Chinese Agricultural Mechanization, 2023, 44(5): 188-197. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||
Copyright © 2021 Journal of Chinese Agricultural Mechanization
Address:100 Liuying, Zhongshan Menwai, Xuanwu District, Nanjing Code: Tel: 025-84346270,84346296