[ 1 ] 王宏超, 陈进, 董广明. 基于最小熵解卷积与稀疏分解的滚动轴承微弱故障特征提取[J]. 机械工程学报, 2013, 49(1): 88-94.
Wang Hongchao, Chen Jin, Dong Guangming. Fault diagnosis method for rolling bearing's weak fault based on minimum entropy deconvolution and sparse decomposition [J]. Journal of Mechanical Engineering, 2013, 49(1): 88-94.
[ 2 ] 崔玲丽, 康晨晖, 胥永刚, 等. 滚动轴承早期冲击性故障特征提取的综合算法研究[J]. 仪器仪表学报, 2010, 31(11): 2422-2427.
[ 3 ] Islam M M M, Prosvirin A E, Kim J M. Data‑driven prognostic scheme for rolling‑element bearings using a new health index and variants of least‑square support vector machines [J]. Mechanical Systems and Signal Processing, 2021, 160: 107853.
[ 4 ] 邢清桂, 吴凯, 周洪斌. 基于分层特征注意力解耦的农机轴承故障诊断[J]. 中国农机化学报, 2024, 45(5): 140-146.
Xing Qinggui, Wu Kai, Zhou Hongbin. Fault diagnosis of agricultural machinery bearing based on hierarchical feature attention decoupling [J]. Journal of Chinese Agricultural Mechanization, 2024, 45(5): 140-146.
[ 5 ] 陈晓平, 王禄, 于雯. 基于EEMD的农机轴承故障诊断[J]. 中国农机化学报, 2012(3): 137-140.
Chen Xiaoping, Wang Lu, Yu Wen. Fault diagnosis of agricultural machinery bearing based on EEMD [J]. Journal of Chinese Agricultural Mechanization, 2012(3): 137-140.
[ 6 ] 李恒, 张氢, 秦仙蓉, 等. 基于短时傅里叶变换和卷积神经网络的轴承故障诊断方法[J]. 振动与冲击, 2018, 37(19): 124-131.
Li Heng, Zhang Qing, Qin Xianrong, et al. Fault diagnosis method for rolling bearings based on short‑time Fourier transform and convolution neural network [J]. Journal of Vibration and Shock, 2018, 37(19): 124-131.
[ 7 ] Kumar J P, Chauhan P S, Pandit P P. Time domain vibration analysis techniques for condition monitoring of rolling element bearing: A review [J]. Materials Today: Proceedings, 2022, 62: 6336-6340.
[ 8 ] Kumar H S, Upadhyaya G. Fault diagnosis of rolling element bearing using continuous wavelet transform and K‑nearest neighbor [J]. Materials Today: Proceedings, 2023, 92: 56-60.
[ 9 ] 赵志宏, 杨绍普. 基于小波包变换与样本熵的滚动轴承故障诊断[J]. 振动、测试与诊断, 2012, 32(4): 640-644.
[10] 杨宇, 于德介, 程军圣. 基于EMD与神经网络的滚动轴承故障诊断方法[J]. 振动与冲击, 2005, 24(1): 85-88.
[11] 程军圣, 史美丽, 杨宇. 基于LMD与神经网络的滚动轴承故障诊断方法[J]. 振动与冲击, 2010, 29(8): 141-144.
[12] Addison P S. The illustrated wavelet transform handbook: Introductory theory and applications in science, engineering, medicine and finance [M]. Institute of Physics Publishing, 2002.
[13] Gu J, Peng Y, Lu H, et al. A novel fault diagnosis method of rotating machinery via VMD, CWT and improved CNN [J]. Measurement, 2022, 200: 111635.
[14] Liang P, Tian J, Wang S, et al. Multi‑source information joint transfer diagnosis for rolling bearing with unknown faults via wavelet transform and an improved domain adaptation network [J]. Reliability Engineering & System Safety, 2024, 242: 109788.
[15] 肖雄, 王健翔, 张勇军, 等. 一种用于轴承故障诊断的二维卷积神经网络优化方法[J]. 中国机电工程学报, 2019, 39(15): 4558-4567.
[16] Ince T, Kiranyaz S, Eren L, et al. Real‑time motor fault detection by 1—D convolutional neural networks [J]. IEEE Transactions on Industrial Electronics, 2016, 63(11): 7067-7075.
[17] Li H, Zhang Q, Qin X, et al. Fault diagnosis method for rolling bearings based on short‑time Fourier transform and convolution neural network [J]. Journal of Vibration and Shock, 2018, 37(19): 124-131.
[18] Zhang W, Peng G, Li C, et al. A new deep learning model for fault diagnosis with good anti‑noise and domain adaptation ability on raw vibration signals [J]. Sensors, 2017, 17(2): 425.
[19] Li Z, Deng S, Hong Y, et al. A novel hybrid CNN—SVM method for lithology identification in shale reservoirs based on logging measurements [J]. Journal of Applied Geophysics, 2024, 223: 105346.
[20] Meister S, Wermes M, Stueve J, et al. Cross‑evaluation of a parallel operating SVM—CNN classifier for reliable internal decision‑making processes in composite inspection [J]. Journal of Manufacturing Systems, 2021, 60: 620-639.
[21] Saxena M, Bannet O O, Gupta M, et al. Bearing fault monitoring using CWT based vibration signature [J]. Procedia Engineering, 2016, 144: 234-241.
[22] Kankar P K, Sharma S C, Harsha S P. Rolling element bearing fault diagnosis using autocorrelation and continuous wavelet transform [J]. Journal of Vibration and Control, 2011, 17(14): 2081-2094.
[23] Tang X, Xu Z, Wang Z. A novel fault diagnosis method of rolling bearing based on integrated vision transformer model [J]. Sensors, 2022, 22(10): 3878.
[24] Zhao L Y, Wang L, Yan R Q. Rolling bearing fault diagnosis based on wavelet packet decomposition and multi‑scale permutation entropy [J]. Entropy, 2015, 17(9): 6447-6461.
[25] 高震宇. 基于深度卷积神经网络的图像分类方法研究及应用[D]. 合肥: 中国科学技术大学, 2018.
[26] Sadoughi M, Hu C. Physics‑based convolutional neural network for fault diagnosis of rolling element bearings [J]. IEEE Sensors Journal, 2019, 19(11): 4181-4192.
[27] Tang T, Hu T, Chen M, et al. A deep convolutional neural network approach with information fusion for bearing fault diagnosis under different working conditions [J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2021, 235(8): 1389-1400.
[28] Song X, Wei W, Zhou J, et al. Bayesian‑optimized hybrid kernel SVM for rolling bearing fault diagnosis [J]. Sensors, 2023, 23(11): 5137.
[29] Shen W, Xiao M, Wang Z, et al. Rolling bearing fault diagnosis based on support vector machine optimized by improved grey wolf algorithm [J]. Sensors, 2023, 23(14): 6645.
|