[1] 赵建强, 朱秀鑫, 赵哲远. 关于规范设施农业用地管理的政策研究——以浙江省为例[J]. 上海国土资源, 2020, 41(4): 56-59.
Zhao Jianqiang, Zhu Xiuxin, Zhao Zheyuan. Policies on the facilities agriculture land management in Zhejiang Province [J]. Shanghai Land & Resources, 2020, 41(4): 56-59.
[2] 孙萍, 林贤锐, 沈建生. 葡萄—香菇立体循环栽培技术[J]. 现代农业科技, 2018(8): 89-90.Sun Ping, Lin Xianrui, Shen Jiansheng. Three-dimensional and recycling cultivation technique of Grape-Lentinus Edodes [J]. Modern Agricultural Science and Technology, 2018(8): 89-90.
[3] 孙萍, 沈建生, 林贤锐. 延长光照时间对立体种植模式下草莓植株生长的影响[J]. 浙江农业科学, 2016, 57(1): 82-83, 89.
[4] 孙萍, 林贤锐, 鲍慧, 等. 葡萄—高架草莓—铁皮石斛生态高值型立体栽培技术[J]. 北方园艺, 2018(10): 200-203.
[5] Yamada Y, Shichijo T, Hirose K. Labor-saving system for fruit harvesting and transporting in a sloping citrus orchard of satsuma mandarin oranges [J]. Bulletin of the Fruit Tree Research Station, 1982: 1-22.
[6] 王蓬勃, 耿长兴, 李伟, 等. 用于温室自动作业的路轨两用底盘车[P]. 中国专利: CN202010610237.7, 2020-09-29.
[7] 崔志超, 管春松, 陈永生, 等. 温室用小型多功能电动履带式作业平台设计[J]. 农业工程学报, 2019, 35(9): 48-57.
Cui Zhichao, Guan Chunsong, Chen Yongsheng, et al. Design of small multi-functional electric crawler platform for greenhouse [J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(9): 48-57.
[8] 李冲冲. 丘陵果园多功能履带运输车的设计与试验[D]. 南京: 南京农业大学, 2018.Li Chongchong. Design and tests of the multifunctional track transporter for hilly orchards [D]. Nanjing: Nanjing Agricultural University, 2018.
[9] 刘大为, 谢方平, 李旭, 等. 小型果园升降作业平台的设计与试验[J]. 农业工程学报, 2015(3): 113-121.
Liu Dawei, Xie Fangping, Li Xu, et al. Design and experiment of small lifting platform in orchard [J]. Transactions of the Chinese Society of Agricultural Engineering, 2015(3): 113-121.
[10] 韩振浩, 朱立成, 苑严伟, 等. 基于重心自适应调控的山地果园运输车设计与试验[J]. 农业机械学报, 2022, 53(2): 430-442.
Han Zhenhao, Zhu Licheng, Yuan Yanwei, et al. Design and test of transport vehicle for hillside orchards based on center of gravity regulation [J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(2): 430-442.
[11] 马锃宏, 王蓬勃, 耿长兴, 等. 自走式履带底盘遥控系统设计与试验[J]. 中国农机化学报, 2018, 39(3): 42-45.
Ma Zenghong, Wang Pengbo, Geng Changxing, et al. Design and experiment of remote-control in self-propelled track chassis [J]. Journal of Chinese Agricultural Mechanization, 2018, 39(3): 42-45.
[12] 赵林亭, 邱绪云, 宋裕民, 等. 果园自走式电动底盘控制系统设计与试验[J]. 中国农机化学报, 2020, 41(2): 120-126.
Zhao Linting, Qiu Xuyun, Song Yumin, et al. Design and test of control system for orchard self-propelled electric chassis [J]. Journal of Chinese Agricultural Mechanization, 2020, 41(2): 120-126.
[13] 管春松, 胡桧, 陈永生, 等. 温室用小型电动拖拉机研究[J]. 中国农机化学报, 2015, 36(2): 67-69.
Guan Chunsong, Hu Hui, Chen Yongsheng, et al. Study on small electric tractors for greenhouse [J]. Journal of Chinese Agricultural Mechanization, 2015, 36(2): 67-69.
[14] 王韦韦, 陈黎卿, 杨洋, 等. 农业机械底盘技术研究现状与展望[J]. 农业机械学报, 2021, 52(8): 1-15.
Wang Weiwei, Chen Liqing, Yang Yang, et al. Development and prospect of agricultural machinery chassis technology [J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(8): 1-15.
[15] 徐勇. 面向设施农业的履带式智能施药车开发[D]. 扬州: 扬州大学, 2020.Xu Yong. Development of tracked intelligent pesticide application vehicle for facility agriculture [D]. Yangzhou: Yangzhou University, 2020.
[16] 孙景彬, 楚国评, 潘冠廷, 等. 遥控全向调平山地履带拖拉机设计与性能试验[J]. 农业机械学报, 2021, 52(5): 358-369.
Sun Jingbin, Chu Guoping, Pan Guanting, et al. Design and performance test of remote control omnidirectional leveling hillside crawler tractor [J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(5): 358-369.
[17] 成大先. 机械设计手册[M]. 北京: 化学工业出版社, 2007.
[18] 刘学峰, 钟波, 褚幼晖, 等. 新型果园采摘作业平台升降调平机构设计与分析[J]. 中国农机化学报, 2020, 41(2): 80-85, 106.
Liu Xuefeng, Zhong Bo, Chu Youhui, et al. Design and analysis of lifting and leveling mechanism for new orchard picking platform [J]. Journal of Chinese Agricultural Mechanization, 2020, 41(2): 80-85, 106.
[19] 赵新虎, 李成群. 一种轻型电动剪叉式升降平台结构设计与分析[J]. 机械工程与自动化, 2018(2): 110-111, 114.
Zhao Xinhu, Li Chengqun. Structural design and analysis on a light electric scissor lifting platform [J]. Mechanical Engineering & Automation, 2018(2): 110-111, 114.
[20] GB/T 3871.5—2006, 转向圆和通过圆直径[S].
|