English

中国农机化学报

中国农机化学报 ›› 2025, Vol. 46 ›› Issue (6): 91-97.DOI: 10.13733/j.jcam.issn.2095-5553.2025.06.014

• 农业信息化工程 • 上一篇    下一篇

基于改进遗传算法优化LSTM的营养液温度预测模型

刘艺梦1,2,王会强2,丁小明2,李飞3,孙玉林4,孙广军5   

  1. (1. 农业农村部规划设计研究院,北京市,100125; 2. 河北农业大学机电工程学院,河北保定,071001; 
    3. 馆陶县飞翔机械装备制造有限公司,河北邯郸,057750; 4. 河北田野节水灌溉设备有限公司,
    河北邯郸,057350; 5. 唐山利军机械制造有限公司,河北唐山,064100)

  • 出版日期:2025-06-15 发布日期:2025-05-22
  • 基金资助:
    农业农村部规划设计研究院自主研发项目(QD202106);农业农村部规划设计研究院科技创新团队建设项目(CXTD—2021—05);农业农村部规划设计研究院农规英才计划项目(QNYC—2021—02)

Optimization of nutrient solution temperature prediction model of LSTM based on improved genetic algorithm

Liu Yimeng1, 2, Wang Huiqiang1, Ding Xiaoming2, Li Fei3, Sun Yulin4, Sun Guangjun5   

  1. (1. Chinese Academy and Agricultural Engineering, Ministry of Agriculture and Rural Affairs, Beijing, 100125, China; 
    2. College of Mechanical and Electrical Engineering, Hebei Agricultural University, Baoding, 071001, China; 
    3. Guantao Feixiang Machinery and Equipment Manufacturing Co., Ltd., Handan, 057750, China; 
    4. Hebei Field Water‑Saving Irrigation Equipment Co., Ltd., Handan, 057350, China; 
    5. Tangshan Lijun Machinery Manufacturing Co., Ltd., Tangshan, 064100, China)
  • Online:2025-06-15 Published:2025-05-22

摘要:

准确预测营养液温度是营养液膜栽培技术(NFT)调控根区温度的关键,对作物生长具有重要意义,但因营养液温度具有时序性、非线性及多耦合性等特征,难以实现连续、精准化预测,基于此,提出一种改进遗传算法(IGA)优化多变量长短时记忆神经网络(LSTM)模型参数的营养液温度预测方法,通过引入正弦函数,对遗传算法中的固定交叉和变异概率进行优化。使用皮尔逊相关分析法获取相关性较强的特征。同时构造特征与时间步长的矩阵,将其输入到网络中进行温度预测。预测结果表明,在预测时间为20~60 min时,模型决定系数为0.954~0.985,均方根误差为0.183 ℃~0.365 ℃,平均绝对误差为0.165 ℃~0.311 ℃。并在不同清晰度指数KT下进行验证。结果表明,在[0.5>KT≥0.2](多云)时,模型营养液温度预测效果最好,且在其他[KT]下模型可以达到生产所需预测精度要求,为根区精准高效控温提供重要依据。

关键词: 营养液膜技术, 改进遗传算法, LSTM神经网络, 皮尔逊相关分析, 营养液温度预测

Abstract:

 Accurately predicting the temperature of nutrient solution is the key to regulating root zone temperature in Nutrient Film Technique (NFT), which is of great significance for crop growth. However, due to the temporal, nonlinear and multi coupling characteristics of nutrient solution temperature, it is difficult to achieve continuous and accurate prediction. This article proposes an improved genetic algorithm (IGA) to optimize a multivariable long short‑term memory (LSTM) neural network for predicting nutrient solution temperature. By introducing a sine function, the fixed crossover and mutation probabilities in the genetic algorithm were optimized. Pearson correlation analysis was used to obtain features with strong correlation. Simultaneously constructing a matrix of features and time steps, and inputting it into the network for temperature prediction, the model's coefficient of determination for predicting 20-60 min was 0.954-0.985, the root mean square error was 0.183 ℃-0.365 ℃, and the average absolute error was 0.165 ℃-0.311 ℃. And validated under different clarity indices KT, the results showed that the model had the best prediction effect on nutrient solution temperature when it was 0.5>KT≥0.2 (cloudy), and the model could meet the required prediction accuracy requirements for production under other KT, providing an important basis for precise and efficient temperature control in the root zone.

Key words: nutrient solution membrane technology, improved genetic algorithm, LSTM neural network, Pearson correlation analysis, nutrient solution temperature prediction

中图分类号: