[1] 薛金林, 李雨晴, 曹梓建. 基于深度学习的模糊农田图像中的障碍物检测技术[J]. 农业机械学报, 2022, 53(3): 234-242.
Xue Jinlin, Li Yuqing, Cao Zijian. Obstacle detection based on deep learning for blurred farmland images [J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(3): 234-242.
[2] Mwalupaso G E, Wang S, Rahman S, et al. Agricultural informatization and technical efficiency in maize production in Zambia [J]. Sustainability, 2019, 11(8): 2451.
[3] 何勇, 蒋浩, 方慧, 等. 车辆智能障碍物检测方法及其农业应用研究进展[J]. 农业工程学报, 2018, 34(9): 21-32.
He Yong, Jiang Hao, Fang Hui, et al. Research progress of intelligent obstacle detection methods of vehicles and their application on agriculture [J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(9): 21-32.
[4] 郝帅, 杨磊, 马旭, 等. 基于注意力机制与跨尺度特征融合的YOLOv5输电线路故障检测[J]. 中国电机工程学报, 2023(6): 2319-2330.
Hao Shuai, Yang Lei, Ma Xu, et al. YOLOv5 transmission line fault detection based on attention mechanism and crossscale feature fusion [J]. Proceedings of the CSEE, 2023(6): 2319-2330.
[5] Girshick R, Donahue J, Darrell T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014: 580-587.
[6] Girshick R. Fast RCNN [C]. Proceedings of the IEEE International Conference on Computer Vision, 2015: 1440-1448.
[7] Ren S, He K, Girshick R, et al. Faster RCNN: Towards realtime object detection with region proposal networks [J]. Advances in Neural Information Processing Systems, 2015, 28.
[8] 夏成楷. 基于深度学习的农田障碍物的识别和无人农业车辆避障策略研究[D]. 南京: 南京农业大学, 2020.
Xia Chengkai. Research on farmland obstacle recognition based on deep learning and obstacle avoidance strategies for unmanned agricultural vehicles [D]. Nanjing: Nanjing Agricultural University, 2020.
[9] Liu W, Anguelov D, Erhan D, et al. Ssd: Single shot multibox detector [C]. Computer VisionECCV, 2016: 14th European Conference, 2016: 21-37.
[10] Lin T Y, Goyal P, Girshick R, et al. Focal loss for dense object detection [C]. Proceedings of the IEEE International Conference on Computer Vision, 2017: 2980-2988.
[11] Redmon J, Farhadi A. YOLO9000: Better, faster, stronger [C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 7263-7271.
[12] Redmon J, Farhadi A. Yolov3: An incremental improvement [J]. ArXiv preprint ArXiv: 1804.02767, 2018.
[13] Bochkovskiy A, Wang C Y, Liao H Y M. Yolov4: Optimal speed and accuracy of object detection [J]. arXiv preprint arXiv: 2004.10934, 2020.
[14] 刘俊明, 孟卫华. 基于深度学习的单阶段目标检测算法研究综述[J]. 航空兵器, 2020, 27(3): 44-53.
Liu Junming, Meng Weihua. Review on singlestage object detection algorithm based on deep learning [J]. Aero Weaponry, 2020, 27(3): 44-53.
[15] 赵奇慧, 刘艳洋, 项炎平. 基于深度学习的单阶段车辆检测算法综述[J]. 计算机应用, 2020, 40(S2): 30-36.
Zhao Qihui, Liu Yanyang, Xiang Yanping. Review of onestage vehicle detection algorithms based on deep learning [J]. Journal of Computer Applications, 2020, 40(S2): 30-36.
[16] 刘慧, 张礼帅, 沈跃, 等. 基于改进SSD的果园行人实时检测方法[J]. 农业机械学报, 2019, 50(4): 29-35, 101.
Liu Hui, Zhang Lishuai, Shen Yue, et al. Realtime pedestrian detection in orchard based on improved SSD [J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(4): 29-35, 101.
[17] 魏建胜, 潘树国, 田光兆, 等. 农业车辆双目视觉障碍物感知系统设计与试验[J]. 农业工程学报, 2021, 37(9): 55-63.
Wei Jiansheng, Pan Shuguo, Tian Guangzhao, et al. Design and experiments of the binocular visual obstacle perception system for agricultural vehicles [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(9): 55-63.
[18] 李文涛, 张岩, 莫锦秋, 等. 基于改进YOLOv3-tiny的田间行人与农机障碍物检测[J]. 农业机械学报, 2020, 51(S1): 1-8, 33.
Li Wentao, Zhang Yan, Mo Jinqiu, et al. Detection of pedestrian and agricultural vehicles in field based on improved YOLOv3-tiny [J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(S1): 1-8, 33.
[19] Wang J, Chen Y, Gao M, et al. Improved YOLOv5 network for realtime multiscale traffic sign detection [J]. arXiv preprint arXiv: 2112.08782, 2021.
[20] 杨娟娟, 高晓阳, 李红岭, 等. 基于机器视觉的无人机避障系统研究[J]. 中国农机化学报, 2020, 41(2): 155-160.
Yang Juanjuan, Gao Xiaoyang, Li Hongling, et al. Research on UAV obstacle avoidance system based on machine vision [J]. Journal of Chinese Agricultural Mechanization, 2020, 41(2): 155-160.
[21] 刘路, 潘艳娟, 陈志健, 等. 高遮挡环境下玉米植保机器人作物行间导航研究[J]. 农业机械学报, 2020, 51(10): 11-17.
Liu Lu, Pan Yanjuan, Chen Zhijian, et al. Interrows navigation method for corn crop protection vehicles under high occlusion environment [J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(10): 11-17.
[22] Woo S, Park J, Lee J Y, et al. CBAM: Convolutional block attention module [C]. Proceedings of the European Conference on Computer Vision (ECCV), 2018: 3-19.
[23] Han K, Wang Y, Tian Q, et al. GhostNet: More features from cheap operations [C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020: 1580-1589.
|