[ 1 ] 赵莹. 我国甘蔗收获机械化推广应用现状与发展建议[J]. 中国农机化学报, 2016, 37(9): 236-244, 269.
Zhao Ying. Extending situation and development proposal on sugarcane harvesting mechanization in China [J]. Journal of Chinese Agricultural Mechanization, 2016, 37(9): 236-244, 269
[ 2 ] 刘晓雪, 段萱. “十三五”以来国内外食糖市场形势分析与未来展望[J]. 农业展望, 2018, 14(9): 8-16.
Liu Xiaoxue, Duan Xuan. Domestic and international sugar market situations and their prospects during the 13th five‑year plan period [J]. Agricultural Outlook, 2018, 14(9): 8-16.
[ 3 ] 沈中华, 李尚平, 麻芳兰, 等. 提高整杆式小型甘蔗收割机喂入能力的试验研究[J]. 中国农机化学报, 2015, 36(1): 31-36.
Shen Zhonghua, Li Shangping, Ma Fanglan, et al. Improving the feeding ability of small whole stalk sugarcane harvester [J]. Journal of Chinese Agricultural Mechanization , 2015, 36(1): 31-36.
[ 4 ] 范博. 小型甘蔗收获机分流喂入系统的设计及试验研究[D]. 桂林: 桂林理工大学, 2017.
[ 5 ] 解福祥, 区颖刚, 刘庆庭, 等. 甘蔗收割机物流虚拟试验[J]. 农业机械学报, 2010, 41(S1): 90-94.
Xie Fuxiang, Ou Yinggang, Liu Qingting, et al. Virtual experiment on flow simulation of sugarcane harvester [J]. Transactions of the Chinese Society for Agricultural Machinery, 2010, 41(S1): 90-94.
[ 6 ] 宓逸舟. 基于双目视觉的快递包裹体积计量系统[D]. 合肥: 合肥工业大学, 2017.
[ 7 ] 李秀智. 基于机器视觉的苹果形状分级系统研究[D]. 南京: 南京农业大学, 2003.
[ 8 ] 龙洁花, 赵春江, 林森, 等. 改进Mask R-CNN的温室环境下不同成熟度番茄果实分割方法[J]. 农业工程学报, 2021, 37(18): 100-108.
Long Jiehua, Zhao Chunjiang, Lin Sen, et al. Segmentation method of the tomato fruits with different maturities under greenhouse environment based on improved Mask R-CNN [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(18): 100-108.
[ 9 ] Wu D, Lü S, Jiang M, et al. Using channel pruning‑based YOLOv4 deep learning algorithm for the real‑time and accurate detection of apple flowers in natural environments [J]. Computers and Electronics in Agriculture, 2020, 178: 105742.
[10] Jia W, Tian Y, Luo R, et al. Detection and segmentation of overlapped fruits based on optimized Mask R-CNN application in apple harvesting robot [J]. Computers and Electronics in Agriculture, 2020, 172: 105380.
[11] 赵鹏翔. 基于机器视觉的纱线运动参数识别[D]. 上海: 东华大学, 2022.
[12] 毛先胤, 邢懿, 罗国强, 等. 基于改进SGBM算法的输电线路覆冰厚度测量[J]. 自动化与仪器仪表, 2021(11): 23-26, 31.
Mao Xianyin, Xing Yi, Luo Guoqiang, et al. Measurement of ice thickness of transmission line based on improved SGBM algorithm [J]. Automation and Instrumentation, 2021(11): 23-26, 31.
[13] 赵航, 孙冬梅, 董清卿, 等. 基于双目视觉测量系统的特征点匹配研究[J]. 现代电子技术, 2019, 42(23): 154-157, 162.
Zhao Hang, Sun Dongmei, Dong Qingqing, et al. Research on feature point matching based on binocular vision measurement system [J]. Modern Electronic Technology, 2019, 42(23): 154-157, 162.
[14] 黄松梅, 毕远伟, 刘殿通, 等. 双目立体视觉非接触式测量研究[J]. 烟台大学学报(自然科学与工程版), 2017, 30(4): 323-327.
Huang Songmei, Bi Yuanwei, Liu Diantong, et al. Non‑contact measurement with binocular stereo vision [J]. Journal of Yantai University (Natural Science and Engineering Edition), 2017, 30(4): 323-327.
[15] 黄学然. 基于双目立体视觉的三维重建技术研究[D]. 西安: 西安电子科技大学, 2018.
[16] 赵成星, 张晓玲, 杨宇. 基于SGBM半全局立体匹配算法的三维重建[J]. 激光杂志, 2021, 42(4): 139-143.
Zhao Chengxing, Zhang Xiaoling, Yang Yu. 3D reconstruction based on SGBM semi‑global stereo matching algorithm [J]. Laser Journal, 2021, 42 (4): 139-143.
[17] Zhu Daixian. SIFT algorithm analysis and optimization [C]. 2010 International Conference on Image Analysis and Signal Processing. IEEE, 2010: 415-419.
[18] Markel J. The SIFT algorithm for fundamental frequency estimation [J]. IEEE Transactions on Audio and Electroacoustics, 1972, 20(5): 367-377.
[19] 张宝祥, 玉振明, 杨秋慧. 基于Harris-SIFT算法和全卷积深度预测的显微镜成像的三维重建研究[J]. 光学精密工程, 2022, 30(14): 1669-1681.
Zhang Baoxiang, Yu Zhenming, Yang Qiuhui. Research on 3D reconstruction of microscope imaging based on Harris-SIFT algorithm and full convolution depth prediction [J]. Optics and Precision Engineering, 2022, 30(14): 1669-1681.
[20] 王英先, 马社祥. 结合置信度评估与再检测的目标长时跟踪[J]. 计算机工程与设计, 2022, 43(12): 3348-3355.
Wang Yingxian, Ma Shexiang. Long‑term object tracking combined with confidence evaluation and re‑detection [J]. Computer Engineering and Design, 2022, 43(12): 3348-3355.
[21] 马保亮. 基于双目视觉的矿石体积测量研究[D]. 赣州: 江西理工大学, 2021.
|