中国农机化学报 ›› 2023, Vol. 44 ›› Issue (5): 198-207.
付豪1, 2,赵学观2,翟长远1, 2,郑康2,郑申玉2,王秀2
出版日期:
2023-05-15
发布日期:
2023-06-02
基金资助:
Fu Hao1, 2, Zhao Xueguan2, Zhai Changyuan1, 2, Zheng Kang2, Zheng Shenyu2, Wang Xiu2
Online:
2023-05-15
Published:
2023-06-02
摘要: 伴生杂草不仅与作物争夺养分和水分,而且还是多种病虫害的中间寄主,成为困扰作物高效生产的难题。随着深度学习技术的发展,杂草的自动检测和分类识别在清除杂草过程中得到重要应用。首先阐述应用于杂草识别过程中深度学习的硬件需求以及软件实现过程,分析用于深度学习不同硬件的优缺点,阐述深度学习模型建立、训练、模型评估以及模型部署等基本步骤;并重点论述深度学习方法在杂草和作物识别以及杂草分类识别的研究进展。然后指出深度学习数据需求量大,目前无通用数据集,杂草、作物相互遮挡,光照环境复杂,机器作业条件恶劣等情况下识别准确率低的问题。最后提出图像与光谱数据融合、杂草识别模型模块化、杂草长势预测、模型嵌入式部署研究将成为基于深度学习的杂草识别方法未来的研究方向。
中图分类号:
付豪, , 赵学观, 翟长远, , 郑康, 郑申玉, 王秀. 基于深度学习的杂草识别方法研究进展[J]. 中国农机化学报, 2023, 44(5): 198-207.
Fu Hao, , Zhao Xueguan, Zhai Changyuan, , Zheng Kang, Zheng Shenyu, Wang Xiu. Research progress on weed recognition method based on deep learning technology[J]. Journal of Chinese Agricultural Mechanization, 2023, 44(5): 198-207.
[1] 高平磊, 郭水良, 印丽萍, 等. 影响我国杂草分布危害的性状统计分析[J]. 上海师范大学学报(自然科学版), 2010, 39(6): 623-629. Gao Pinglei, Guo Shuiliang, Yin Liping, et al. Statistical analysis on traits influencing weed distribution and their damages in China [J]. Journal of Shanghai Normal University (Philosophy & Social Sciences Edition), 2010, 39(6): 623-629. [2] Hasan A S M M, Sohel F, Diepeveen D, et al. A survey of deep learning techniques for weed detection from images [J]. Computers and Electronics in Agriculture, 2021, 184: 106067. [3] 苗中华, 余孝有, 徐美红, 等. 基于图像处理多算法融合的杂草检测方法及试验[J]. 智慧农业(中英文), 2020, 2(4): 103-115. Miao Zhonghua, Yu Xiaoyao, Xu Meihong, et al. Automatic weed detection method based on fusion of multiple image processing algorithms [J]. Smart Agriculture, 2020, 2(4): 103-115. [4] 袁洪波, 赵努东, 程曼. 基于图像处理的田间杂草识别研究进展与展望[J]. 农业机械学报, 2020, 51(S2): 323-334. Yuan Hongbo, Zhao Nudong, Cheng Man. Review of weeds recognition based on image processing [J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(S2): 323-334. [5] 付文博, 孙涛, 梁藉, 等. 深度学习原理及应用综述[J]. 计算机科学, 2018, 45(S1): 11-15, 40. Fu Wenbo, Sun Tao, Liang Ji, et al. Review of principle and application of deep learning [J]. Computer Science. 2018, 45(S1): 11-15, 40. [6] 傅隆生, 宋珍珍, Zhang Xin, 等. 深度学习方法在农业信息中的研究进展与应用现状[J]. 中国农业大学学报, 2020, 25(2): 105-120. Fu Longsheng, Song Zhenzhen, Zhang Xin, et al. Applications and research progress of deep learning in agriculture [J]. Journal of China Agricultural University, 2020, 25(2): 105-120. [7] 胡越, 罗东阳, 花奎, 等. 关于深度学习的综述与讨论[J]. 智能系统学报, 2019, 14(1): 1-19. Hu Yue, Luo Dongyang, Hua Kui, et al. Overview on deep learning [J]. CAAI Transactions on Intelligent Systems, 2019, 14(1): 1-19. [8] Lecun Y, Bengio Y, Hinton G. Deep learning [J]. Nature, 2015, 521: 436-444. [9] Li G, Zhang M, Li J, et al. Efficient densely connected convolutional neural networks [J]. Pattern Recognition, 2021, 109: 107610. [10] 弋凡. 基于FPGA的卷积神经网络加速器的设计与实现[D]. 西安: 西安电子科技大学, 2019. Ge Fan. Design and implementation of convolution neural network based on FPGA [D], Xian: Xidian University, 2019. [11] 赵博雅. 基于卷积神经网络的硬件加速器设计及实现研究[D]. 哈尔滨: 哈尔滨工业大学, 2018. Zhao Boya. Study on design and implementation of hardware accelerators based on convolutional neural networks [D]. Harbin: Harbin Institute of Technology, 2018. [12] 王璨, 武新慧, 李志伟. 基于卷积神经网络提取多尺度分层特征识别玉米杂草[J]. 农业工程学报, 2018, 34(5): 144-151. Wang Can, Wu Xinhui, Li Zhiwei. Recognition of maize and weed based on multiscale hierarchical features extracted by convolutional neural network [J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(5): 144-151. [13] 彭明霞, 夏俊芳, 彭辉. 融合FPN的Faster R-CNN复杂背景下棉田杂草高效识别方法[J]. 农业工程学报, 2019, 35(20): 202-209. Peng Mingxia, Xia Junfang, Peng Hui. Efficient recognition of cotton and weed in field based on Faster R-CNN by integrating FPN [J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(20): 202-209. [14] 姜红花, 王鹏飞, 张昭, 等. 基于卷积网络和哈希码的玉米田间杂草快速识别方法[J]. 农业机械学报, 2018, 49(11): 30-38. Jiang Honghua, Wang Pengfei, Zhang Zhao, et al. Fast identification of field weeds based on deep convolutional network and binary Hash code [J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(11): 30-38. [15] 刘庆飞, 张宏立, 王艳玲. 基于深度可分离卷积的实时农业图像逐像素分类研究[J]. 中国农业科学, 2018, 51(19): 3673-3682. Liu Qingfei, Zhang Hongli, Wang Yanling. Realtime pixelwise classification of agricultural images based on depthwise separable convolution [J]. Scientia Agricultura Sinica, 2018, 51(19): 3673-3682. [16] 卢丽强, 郑思泽, 肖倾城, 等. 面向卷积神经网络的FPGA设计[J]. 中国科学(信息科学), 2019, 49(3): 277-294. Lu Liqiang, Zheng Size, Xiao Qingcheng, et al. Accelerating convolutional neural networks on FPGA [J]. Scientia Sinica (Informationis), 2019, 49(3): 277-294. [17] 王超, 王腾, 马翔, 等. 基于FPGA的机器学习硬件加速研究进展[J]. 计算机学报, 2020, 43(6): 1161-1182. Wang Chao, Wang Teng, Ma Xiang, et al. Research progress on FPGA-based machine hardware acceleration [J]. Chinese Journal of Computers, 2020, 43(6): 1161-1182. [18] Olsen A, Konovalov D A, Philippa B, et al. DeepWeeds: A multiclass weed species image dataset for deep learning [J]. Scientific Reports, 2019, 9(1): 2058. [19] Suh H K, Ijsselmuiden J, Hofstee J W, et al. Transfer learning for the classification of sugar beet and volunteer potato under field conditions [J]. Biosystems Engineering, 2018, 174: 50-65. [20] 刘亚田. 基于深度学习的玉米幼苗与杂草辨识研究[D]. 哈尔滨: 哈尔滨工业大学, 2019. Liu Yatian. Research on identification of maize seedlings and weeds based on deep learning [D]. Harbin: Harbin Institute of Technology, 2019. [21] 张茹飞. 基于低空遥感的杂草识别及定位方法研究[D]. 杨凌: 西北农林科技大学, 2020. Zhang Rufei. Weed identification and location based on low altitude remote sensing [D]. Yangling: Northwest A & F University, 2020. [22] Alessandro D, Freitas D M, Gercina G, et al. Weed detection in soybean crops using ConvNets [J]. Computers and Electronics in Agriculture, 2017, 143: 314-324. [23] Sudars K, Jasko J, Namatevs I, et al. Dataset of annotated food crops and weed images for robotic computer vision control [J]. Data in Brief, 2020, 31: 105833. [24] 贾少鹏, 高红菊, 杭潇. 基于深度学习的农作物病虫害图像识别技术研究进展[J]. 农业机械学报, 2019, 50(S1): 313-317. Jia Shaopeng, Gao Hongju, Hang Xiao. Research progress on image recognition technology of crop pests and diseases based on deep learning [J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(S1): 313-317. [25] Suk H. An introduction to neural networks and deep learning [M]. Academic Press, 2017. [26] 吴艳霞, 梁楷, 刘颖, 等. 深度学习FPGA加速器的进展与趋势[J]. 计算机学报, 2019, 42(11): 2461-2480. Wu Yanxia, Liang Kai, Liu Ying, et al. The progress and trends of FPGA-Based accelerators in deep learning [J]. Chinses Journal of Computers, 2019, 42(11): 2461-2480. [27] Simonyan K, Zisserman A. Very deep convolutional networks for largescale image recognition [J]. Computer Science, 2015. [28] Szegedy C, Liu Wei, Jia Yangqing, et al. Going deeper with convolutions [C]. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2015. [29] He K, Zhang X, Ren S, et al. Deep residual learning for image recognition [C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2016. [30] Abdalla A, Cen H, Wan L, et al. Finetuning convolutional neural network with transfer learning for semantic segmentation of groundlevel oilseed rape images in a field with high weed pressure [J]. Computers and Electronics in Agriculture, 2019, 167: 105091. [31] 林景栋, 吴欣怡, 柴毅, 等. 卷积神经网络结构优化综述[J]. 自动化学报, 2020, 46(1): 24-37. Lin Jingdong, Wu Xinyi, Chai Yi, et al. Structure optimization of convolutional neural networks: A survey [J]. Acta Automatica Sinica, 2020, 46(1): 24-37. [32] 张慧, 王坤峰, 王飞跃. 深度学习在目标视觉检测中的应用进展与展望[J]. 自动化学报, 2017, 43(8): 1289-1305. Zhang Hui, Wang Kunfeng, Wang Feiyue. Advances and perspectives on applications of deep learning in visual object detection [J]. Acta Automatica Sinica, 2017, 43(8): 1289-1305. [33] Ren S, He K, Girshick R, et al. Faster R-CNN: Towards realtime object detection with region proposal networks [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 39(6): 1137-49. [34] Liu W, Anguelov D, Erhan D, et al. SSD: Single shot multibox detector [J]. arXiv: 1512.02325, 2016. [35] Redmon J, Divvala S, Girshick R, et al. You Only Look Once: Unified, realtime object detection [J]. arXiv:1506.02640, 2016. [36] 孟庆宽, 张漫, 杨晓霞, 等. 基于轻量卷积结合特征信息融合的玉米幼苗与杂草识别[J]. 农业机械学报, 2020, 51(12): 238-245, 303. Meng Qingkuan, Zhang Man,Yang Xiaoxia, et al. Recognition of maize seedling and weed based on light weight convolution and feature fusion [J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(12): 238-245, 303. [37] 樊湘鹏, 周建平, 许燕, 等. 基于优化Faster R-CNN的棉花苗期杂草识别与定位[J]. 农业机械学报, 2021, 52(5): 26-34. Fan Xiangpeng, Zhou Jianping, Xu Yan, et al. Identification and localization of weeds based on optimized faster R-CNN in cotton seedling stage [J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(5): 26-34. [38] 薛金利, 戴建国, 赵庆展, 等. 基于低空无人机影像和YOLOv3实现棉田杂草检测[J]. 石河子大学学报(自然科学版), 2019, 37(1): 21-27. Xue Jinli, Dai Jianguo, Zhao Qingzhan, et al. Cotton field weed detection based on lowaltitude drone image and YOLOv3 [J]. Journal of Shihezi University (Natural Science), 2019, 37(1): 21-27. [39] 李春明, 逯杉婷, 远松灵, 等. 基于Faster R-CNN的除草机器人杂草识别算法[J]. 中国农机化学报, 2019, 40(12): 171-76. Li Chunming, Lu Shanting, Yuan Songling, et al. Weed identification algorithm of weeding robot based on Faster R-CNN [J]. Journal of Chinese Agricultural Mechanization, 2019, 40(12): 171-176. [40] 梁新宇, 罗晨, 权冀川, 等. 基于深度学习的图像语义分割技术研究进展[J]. 计算机工程与应用, 2020, 56(2): 18-28. Liang Xinyu, Luo Chen, Quan Jichuan, et al. Research on progress of image semantic segmentation based on deep learning [J]. Computer Engineering and Applications, 2020, 56(2): 18-28. [41] Asad M H, Bais A. Weed detection in canola fields using maximum likelihood classification and deep convolutional neural network [J]. Information Processing in Agriculture, 2020, 7(4): 535-545. [42] 孙俊, 谭文军, 武小红, 等. 多通道深度可分离卷积模型实时识别复杂背景下甜菜与杂草[J]. 农业工程学报, 2019, 35(12): 184-190. Sun Jun, Tan Wenjun, Wu Xiaohong, et al. Realtime recognition of sugar beet and weeds in complex backgrounds using multichannel depthwise separable convolution model [J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(12): 184-190. [43] You J, Liu W, Lee J. A DNN-based semantic segmentation for detecting weed and crop [J]. Computers and Electronics in Agriculture, 2020, 178: 105750. [44] Potena C, Nardi D, Pretto A. Fast and accurate crop and weed identification with summarized train sets for precision agriculture [J]. Advances in Intelligent Systems and Computing, 2017, 531: 105-121. [45] He K, Gkioxari G, Dollár P, et al. Mask R-CNN [C]. 2017 IEEE International Conference on Computer Vision (ICCV), 2017. [46] 权龙哲, 吴冰, 毛首人. 基于Mask R-CNN农田杂草实例分割与叶龄识别方法[J]. 东北农业大学学报, 2021, 52(4): 65-76. Quan Longzhe, Wu Bing, Mao Shouren. Method for segmentation and leaf age recognition of farmland weeds based on Mask R-CNN [J]. Journal of Northeast Agricultural University, 2021, 52(4): 65-76. [47] 姜红花, 张传银, 张昭, 等. 基于Mask R-CNN的玉米田间杂草检测方法[J]. 农业机械学报, 2020, 51(6): 220-228, 247. Jiang Honghua, Zhang Chuanyin, Zhang Zhao, et al. Detection method of corn weed based on Mask R-CNN [J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(6): 220-228, 247. [48] 赵轶, 刘堂友. 基于卷积神经网络的田间杂草识别方法研究[J]. 计算机仿真, 2019, 36(4): 440-444. Zhao Yi, Liu Tangyou. Research of field weeds identification on convolutional neural network [J]. Computer Simulation, 2019, 36(4): 440-444. [49] 王术波, 韩宇, 陈建, 等. 基于深度学习的无人机遥感生态灌区杂草分类[J]. 排灌机械工程学报, 2018, 36(11): 1137-1141. Wang Shubo, Han Yu, Chen Jian, et al. Weed classification of remote sensing by UAV in ecological irrigation areas based on deep learning [J]. Journal of Drainage and Irrigation Machinery Engineering, 2018, 36(11): 1137-1141. [50] Andrea C, Daniel B B M, Misael J B J. Precise weed and maize classification through convolutional neuronal networks [C]. 2017 IEEE Second Ecuador Technical Chapters Meeting (ETCM), 2017. [51] Hu K, Coleman G, Zeng S, et al. Graph weeds net: A graphbased deep learning method for weed recognition [J]. Computers and Electronics in Agriculture, 2020, 174: 105520. [52] 徐艳蕾, 何润, 翟钰婷, 等. 基于轻量卷积网络的田间自然环境杂草识别方法[J]. 吉林大学学报(工学版), 2021, 51(6): 2304-2312. Xu Yanlei, He Run, Zhai Yuting, et al. Weed identification method based on deep transfer learning in field natural environment [J]. Journal of Jilin University (Engineering and Technology Edition), 2021, 51(6): 2304-2312. [53] Ahmad A, Saraswat D, Aggarwal V, et al. Performance of deep learning models for classifying and detecting common weeds in corn and soybean production systems [J]. Computers and Electronics in Agriculture, 2021, 184: 106081. [54] Jiang H, Zhang C, Qiao Y, et al. CNN feature based graph convolutional network for weed and crop recognition in smart farming [J]. Computers and Electronics in Agriculture, 2020, 174: 105450. [55] 王生生, 王顺, 张航, 等. 基于轻量和积网络及无人机遥感图像的大豆田杂草识别[J]. 农业工程学报, 2019, 35(6): 81-89. Wang Shengsheng, Wang Shun, Zhang Hang, et al. Soybean field weed recognition based on light sumproduct networks and UAV remote sensing images [J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(6): 81-89. [56] 王宝聚, 兰玉彬, 陈蒙蒙, 等. 机器学习在无人农场中的应用现状与展望[J]. 中国农机化学报, 2021, 42(10): 186-192, 217. Wang Baoju, Lan Yubin, Chen Mengmeng, et al. Application status and prospect of machine learning in unmanned farm [J]. Journal of Chinese Agricultural Mechanization, 2021, 42(10): 186-192, 217. [57] 苏丽, 孙雨鑫, 苑守正. 基于深度学习的实例分割研究综述[J]. 智能系统学报, 2022, 17(1): 16-31. Su Li, Sun Yuxin, Yuan Shouzheng. A survey of instance segmentation research based on deep learning [J]. CAAI Transactions on Intelligent Systems, 2022, 17(1): 16-31. [58] Ding J, Huang Y, Liu W, et al. Severely blurred object tracking by learning deep image representations [J]. IEEE Transactions on Circuits and Systems for Video Technology, 2015, 26(2): 319-331. |
[1] | 李明, 丁智欢, 赵靖暄, 陈思铭, 李文勇, 杨信廷. 基于改进YOLOv5s的日光温室黄瓜霜霉病孢子囊检测计数方法[J]. 中国农机化学报, 2023, 44(5): 63-70. |
[2] | 杨承磊, 兰玉彬, 王庆雨, 别晓婷, 单常峰, 王国宾, . 神经网络在温室小气候预测中的应用[J]. 中国农机化学报, 2023, 44(5): 89-99. |
[3] | 周显沁, 韩震宇, 刘成源. 基于改进卷积神经网络与图像处理的蚕茧识别方法[J]. 中国农机化学报, 2023, 44(5): 100-106. |
[4] | 刘士坤, , 金诚谦, 陈满, 杨腾祥, 徐金山. 基于DeepLabV3+网络的机收大豆破碎率在线检测方法[J]. 中国农机化学报, 2023, 44(5): 170-175. |
[5] | 王磊, 袁英, 高玲. 基于改进多元宇宙算法的番茄病害图像识别[J]. 中国农机化学报, 2023, 44(5): 176-181. |
[6] | 段宇飞, , 董庚, 孙记委, 王焱清, . 基于SE-ResNet网络的油茶果果壳与茶籽分选模型[J]. 中国农机化学报, 2023, 44(4): 89-95. |
[7] | 陈鹏, , 马子涵, 章军, 夏懿, 王兵, 梁栋. 融合注意力机制的小麦赤霉病语义分割网络[J]. 中国农机化学报, 2023, 44(4): 145-152. |
[8] | 李岩舟, 何艳洲, , 覃锋, , 钱万强, 吴媚, 乔曦, . 基于卷积神经网络的互花米草识别研究[J]. 中国农机化学报, 2023, 44(4): 159-166. |
[9] | 邓向武, 梁松, 齐龙, 余淑婷. 基于DeepLabV3+的稻田苗期杂草语义分割方法研究[J]. 中国农机化学报, 2023, 44(4): 174-180. |
[10] | 轩梦辉, 赵思夏, 徐立友, 陈小亮, 李团飞. 改进VMD和LSTM的联合收割机装配质量检测方法[J]. 中国农机化学报, 2023, 44(3): 132-140. |
[11] | 王新彦, 易政洋. 基于改进YOLOv5的割草机器人工作环境障碍物检测方法研究[J]. 中国农机化学报, 2023, 44(3): 171-176. |
[12] | 何雨霜, 王琢, 王湘平, 肖进, 罗友谊, 张俊峰. 深度学习在农作物病害图像识别中的研究进展[J]. 中国农机化学报, 2023, 44(2): 148-155. |
[13] | 李子茂, , 李嘉晖, , 尹帆, , 帖军, , 吴钱宝, . 基于可形变卷积与SimAM注意力的密集柑橘检测算法[J]. 中国农机化学报, 2023, 44(2): 156-162. |
[14] | 任浩, , 李丽, , 卢世博, , 陈静姚, 张云峰, . 基于深度学习的复杂自然环境下桑树枝干识别方法[J]. 中国农机化学报, 2023, 44(2): 182-188. |
[15] | 杨文姬, 胡文超, 赵应丁, 钱文彬. 基于改进Yolov5植物病害检测算法研究[J]. 中国农机化学报, 2023, 44(1): 108-115. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2021《中国农机化学报 》编辑部
地址:南京市玄武区中山门外柳营100号 邮编: Tel: 025-84346270,84346296