[1] Reyns P, Missotten B, Ramon H, et al. A review of combine sensors for precision farming [J]. Precision Agriculture, 2002, 3(2): 169-182.
[2] Chung S O, Choi M C, Lee K H, et al. Sensing technologies for grain crop yield monitoring systems: A review [J]. Journal of Biosystems Engineering, 2016, 41(4): 408-417.
[3] 介战, 刘红俊, 侯凤云. 中国精准农业联合收割机研究现状与前景展望[J]. 农业工程学报, 2005, 21(2): 179-182.
Jie Zhan, Liu Hongjun, Hou Fengyun. Research advances and prospects of combine on precision agriculture in China [J]. Transactions of the Chinese Society of Agricultural Engineering, 2005, 21(2): 179-182.
[4] 罗锡文, 廖娟, 胡炼, 等. 提高农业机械化水平促进农业可持续发展[J]. 农业工程学报, 2016, 32(1): 1-11.
Luo Xiwen, Liao Juan, Hu Lian, et al. Improving agricultural mechanization level to promote agricultural sustainable development [J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(1): 1-11.
[5] 刘成良, 林洪振, 李彦明, 等. 农业装备智能控制技术研究现状与发展趋势分析[J]. 农业机械学报, 2020, 51(1): 1-18.
Liu Chengliang, Lin Hongzhen, Li Yanming, et al. Analysis on status and development trend of intelligent control technology for agricultural equipment [J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(1): 1-18.
[6] Wagner E, Schrock M D. Grain flow measurement with a pivoted auger [J]. Transactions of the American Society of Agricultural Engineers, 1987, 30(6): 1583-1586.
[7] Zandonadi R S, Stombaugh T S, Shearer S A, et al. Laboratory performance of a mass flow sensor for dry edible bean harvesters [J]. Applied Engineering in Agriculture, 2009, 26(1): 11-20.
[8] Kim C, Choi M, Park T, et al. Optimization of yield monitoring in harvest using a capacitive proximity sensor [J]. Engineering in agriculture, environment and food, 2016, 9(2): 151-157.
[9] 陈树人, 张漫, 汪懋华. 谷物联合收获机智能测产系统设计和应用[J]. 农业机械学报, 2005, 36(1): 97-99.
Chen Shuren, Zhang Man, Wang Maohua.Designing and application of grain combine yield monitor system [J]. Transactions of the Chinese Society for Agricultural Machinery, 2005, 36(1): 97-99.
[10] 陈树人, 张文革, 李相平, 等. 冲量式谷物流量传感器性能试验研究[J]. 农业机械学报, 2005, 36(2): 82-84.
Chen Shuren, Zhang Wenge, Li Xiangping, et al. Experiment research of grain mass flow sensor based on impact [J]. Transactions of the Chinese Society for Agricultural Machinery, 2005, 36(2): 82-84.
[11] 胡均万, 罗锡文, 陈树人, 等. 双板差分冲量式谷物流量传感器设计[J]. 农业机械学报, 2009, 40(4): 69-72.
Hu Junwan, Luo Xiwen, Chen Shuren, et al. Design of a dualplate differential impactbased yield sensor [J]. Transactions of the Chinese Society for Agricultural Machinery, 2009, 40(4): 69-72.
[12] 陈树人, 杨洪博, 李耀明, 等. 双板差分冲量式谷物流量传感器性能试验[J]. 农业机械学报, 2010, 41(8): 171-174.
Chen Shuren, Yang Hongbo, Li Yaoming, et al. Experiment of dualplate differential impactbased grain flow sensor [J]. Transactions of the Chinese Society for Agricultural Machinery, 2010, 41(8): 171-174.
[13] 陈树人, 仇华铮, 李耀明, 等. 谷物流量传感器试验台的设计与试验[J]. 农业工程学报, 2012, 28(16): 41-46.
Chen Shuren, Qiu Huazheng, Li Yaoming, et al. Design and experiment of testbed for grain flow sensor [J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(16): 41-46.
[14] 陈进, 王坤, 李耀明. 基于Mallat算法的谷物流量信号小波去噪方法[J]. 农业工程学报, 2017, 33(3): 190-197.
Chen Jin, Wang Kun, Li Yaoming. Wavelet denoising method for grain flow signal based on Mallat algorithm [J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(3): 190-197.
[15] 李新成, 李民赞, 郑立华, 等. 谷物联合收获机测产系统采样频率优化与试验[J]. 农业机械学报, 2015, 46(S1): 74-78.
Li Xincheng, Li Minzan, Zheng Lihua, et al. Test and optimization frequency for yield monitor system of grain combine harvester [J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(S1): 74-78.
[16] 李新成, 孙茂真, 李民赞, 等. 谷物联合收获机自动测产系统产量模型[J]. 农业机械学报, 2015, 46(7): 91-96.
Li Xincheng, Sun Maozhen, Li Minzan, et al. Modeling algorithm for yield monitor system of grain combine harvester [J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(7): 91-96.
[17] 杨刚, 雷军波, 刘成良, 等. 基于线结构光源和机器视觉的高精度谷物测产系统研制[J]. 农业工程学报, 2019, 35(8): 21-28.
Yang Gang, Lei Junbo, Liu Chengliang, et al. Development of yield monitoring system with highprecision based on linear structured light source and machine vision [J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(8): 21-28.
[18] 朱洪峰, 熊伟, 崔亚奇, 等. 基于加速度的马尔可夫参数自适应IMM算法[J]. 火力与指挥控制, 2019, 44(11): 46-50, 57.
Zhu Hongfeng, Xiong Wei, Cui Yaqi, et al. Adaptive Markov parameters IMM algorithm based on acceleration [J]. Fire Control & Command Control, 2019, 44(11): 46-50, 57.
[19] 张钧天, 黄辉先, 王程啸, 等. 基于IMM的永磁电机无速度传感器技术[J]. 计算技术与自动化, 2016, 35(4): 39-44.
Zhang Juntian, Huang Huixian, Wang Chengxiao, et al.Sensorless technology of permanent magnet synchronous motors based on IMM [J]. Computing Technology and Automation, 2016, 35(4): 39-44.
[20] 刘妹琴, 汤晓芳, 郑世友, 等. 基于RUKFIMM的非线性系统滤波[J]. 华中科技大学学报(自然科学版), 2013, 41(5): 57-63.
[21] 文家富, 张毅, 陈红松. 基于改进IMMUKF算法的一种融合航迹推演的红外路标室内定位方法[J]. 重庆邮电大学学报(自然科学版), 2017, 29(3): 403-408.
Wen Jiafu, Zhang Yi, Chen Hongsong. Novel infrared landmark indoor positioning method based on improved IMMUKF [J]. Journal of Chongqing University of Posts and Telecommunications (Natural Science Edition), 2017, 29(3): 403-408.
|