中国农机化学报 ›› 2024, Vol. 45 ›› Issue (4): 250-257.DOI: 10.13733/j.jcam.issn.2095-5553.2024.04.036
宋禹莹1, 2,郑炫2,刘进宝2,杨怀君2,李帆2,胡赫岩1, 2
出版日期:
2024-04-15
发布日期:
2024-04-28
基金资助:
Song Yuying1, 2, Zheng Xuan2, Liu Jinbao2, Yang Huaijun2, Li Fan2, Hu Heyan1, 2
Online:
2024-04-15
Published:
2024-04-28
摘要: 准确模拟土壤—耕作工具之间的相互作用可以实现部分替代田间试验环节,不仅能提高效率降低成本,还能优化耕作工具。从经典力学的分析和数值模型分析(有限元分析、离散元分析、流体动力学分析和耦合算法分析)两个方面对土壤—耕作工具相互作用建模分析的研究现状进行综述。提出目前土壤—耕作工具相互作用的建模中对土壤的模拟不够贴近实际、单一建模方法对土壤的模拟有局限性和多软件耦合算法中通过优化边界穿越等问题。通过对多耦合软件中不同模型边界进行优化,提高模拟土壤与耕作工具相互作用的准确性,使模拟结果更贴近实际。
中图分类号:
宋禹莹, , 郑炫, 刘进宝, 杨怀君, 李帆, 胡赫岩, . 土壤—耕作工具相互作用建模分析研究现状[J]. 中国农机化学报, 2024, 45(4): 250-257.
Song Yuying, , Zheng Xuan, Liu Jinbao, Yang Huaijun, Li Fan, Hu Heyan, . Research status of modeling analysis of soiltillage tool interaction[J]. Journal of Chinese Agricultural Mechanization, 2024, 45(4): 250-257.
[1] 机械深松整地作业技术 第一章 土壤耕作概述[J]. 当代农机, 2018(S1): 1-45. [2] (美)吉尔, (美)范德伯. 耕作和牵引土壤动力学[M]. 北京: 中国农业机械出版社, 1983. [3] 曾德超. 机械土壤动力学[M]. 机械土壤动力学, 1995. [4] 孙一源, 高行方, 余登苑. 农业土壤力学[M]. 北京: 中国农业出版社, 1985. [5] (苏)格亚捷夫. 犁体曲面理论[M]. 北京: 中国工业出版社, 1964. [6] 李宝筏. 农业机械学[M]. 北京: 中国农业出版社, 2003. [7] Osman M S. The measurement of soil shear strength [J]. Journal of Terramechanics, 1964, 1(3): 54-60. [8] Hettiaratchi D R P, Reece A R. Symmetrical threedimensional soil failure [J]. Journal of Terramechanics, 1967, 4(3): 45-67. [9] Hettiaratchi D R P, Witney B D, Reece A R. The calculation of passive pressure in twodimensional soil failure [J]. Journal of Agricultural Engineering Research, 1966, 11(2): 89-107. [10] Godwin R J, Spoor G. Soil failure with narrow tines [J]. Journal of Agricultural Engineering Research, 1977, 22(3): 213-228. [11] Mckyes E, Ali O S. The cutting of soil by narrow blades [J]. Journal of Terramechanics, 1977, 14(2): 43-58. [12] Hettiaratchi D R P. A critical state soil mechanics model for agricultural soils [J]. Soil use and management, 1987, 3(3): 94-105. [13] Hettiaratchi D R P, Ocallaghan J R. Mechanical behaviour of agricultural soils [J]. Journal of Agricultural Engineering Research, 1980, 25(3): 239-259. [14] Boizard H, Richard G, RogerEstrade J, et al. Cumulative effects of cropping systems on the structure of the tilled layer in northern France [J]. Soil and Tillage Research, 2002, 64(1-2): 149-164. [15] Raper R L, Erbach D C. Prediction of soil stresses using the finite element method [J]. Transactions of the ASAE, 1990, 33(3): 725-0730. [16] Défossez P, Richard G. Models of soil compaction due to traffic and their evaluation [J]. Soil and Tillage Research, 2002, 67(1): 41-64. [17] Keller T, Défossez P, Weisskopf P, et al. SoilFlex: A model for prediction of soil stresses and soil compaction due to agricultural field traffic including a synthesis of analytical approaches [J]. Soil and Tillage Research, 2007, 93(2): 391-411. [18] Keller T, Berli M, Ruiz S, et al. Transmission of vertical soil stress under agricultural tyres: Comparing measurements with simulations [J]. Soil and Tillage Research, 2014, 140: 106-117. [19] Poodt M P, Koolen A J, Van der Linden J P. FEM analysis of subsoil reaction on heavy wheel loads with emphasis on soil preconsolidation stress and cohesion [J]. Soil and Tillage Research, 2003, 73(1-2): 67-76. [20] Berli M, Kirby J M, Springman S M, et al. Modelling compaction of agricultural subsoils by tracked heavy construction machinery under various moisture conditions in Switzerland [J]. Soil and Tillage Research, 2003, 73(1-2): 57-66. [21] Silva R P, Rolim M M, Gomes I F, et al. Numerical modeling of soil compaction in a sugarcane crop using the finite element method [J]. Soil and Tillage Research, 2018, 181: 1-10. [22] Elijah D L, Weber J A. Soil failure and pressure patterns tor flat cutting blades [J]. Transactions of the ASAE, 1971, 14(4): 781-0785. [23] Chandler H. W. The use of nonlinear fracture mechanics to study the fracture properties of soils [J]. Journal of Agricultural Engineering Research, 1984, 294: 321-327. [24] Rajaram G, GeeClough D. Forcedistance behaviour of tine implements [J]. Journal of Agricultural Engineering Research, 1988, 41(2): 81-98. [25] Rajaram G. Collapse failure in dry clay soils caused by tine implements [J]. Journal of Terramechanics, 1990, 27(2): 69-78. [26] Rajaram G. and Erbach D. C. Soil failure by shear versus modification by tillage: A review [J]. Journal of Terramechanics, 1996, 336: 265-272. [27] Tagar A A, Ji C, Ding Q, et al. Soil failure patterns and draft as influenced by consistency limits: An evaluation of the remolded soil cutting test [J]. Soil and Tillage Research, 2014, 137: 58-66. [28] Tagar A A, Changying J, Adamowski J, et al. Finite element simulation of soil failure patterns under soil bin and field testing conditions [J]. Soil and Tillage Research, 2015, 145: 157-170. [29] Hu T, Guilleminot J, Dolbow J E. A phasefield model of fracture with frictionless contact and random fracture properties: Application to thinfilm fracture and soil desiccation [J]. Computer Methods in Applied Mechanics and Engineering, 2020, 368: 113106. [30] 肖普, 黄阜. 浅埋隧道施工扰动诱发地表塌陷破坏模式研究[J]. 公路与汽运, 2021(5): 160-164. [31] Fang L, Cao C, Li Q, et al. Fracture analysis of compacted clay soil beams with offset notches based on threepoint bending test: experimental characterization and numerical simulation [J]. Advances in Civil Engineering, 2022, 2022: 1-17. [32] Yong R N, Hanna A W. Finite element analysis of plane soil cutting [J]. Journal of Terramechanics, 1977, 14(3): 103-125. [33] 蔡国华, 何进, 李洪文, 等. 固定垄保护性耕作条件下松垄割刀性能对比分析[J]. 农业机械学报, 2010, 41(12): 22-28. Cai Guohua, He Jin, Li Hongwen, et al. Comparative analysis of three ridgeloosing cutters based on permanent raised bed conservation tillage [J]. Transactions of the Chinese Society for Agricultural Machinery, 2010, 41(12): 22-28. [34] 王东伟, 王家胜. 基于超声振动的土壤切削挖掘装置设计与试验[J]. 农业机械学报, 2020, 51(11): 85-92. Wang Dongwei, Wang Jiasheng. Design and test of soil cutting and digging device based on ultrasonic vibration [J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(11): 85-92. [35] Momozu M, Oida A, Yamazaki M, et al. Simulation of a soil loosening process by means of the modified distinct element method [J]. Journal of Terramechanics, 2002, 39(4): 207-220. [36] Shmulevich I, Asaf Z, Rubinstein D. Interaction between soil and a wide cutting blade using the discrete element method [J]. Soil and Tillage Research, 2007, 97(1): 37-50. [37] Flamen P, Vanderlinden B, Delatte P, et al. Multimodality imaging can predict the metabolic response of unresectable colorectal liver metastases to radioembolization therapy with Yttrium-90 labeled resin microspheres [J]. Physics in Medicine & Biology, 2008, 53(22): 6591. [38] Zhang R, Chen B, Li J, et al. DEM simulation of clod crushing by bionic bulldozing plate [J]. Journal of Bionic Engineering, 2008, 5(1): 72-78. [39] Mak J, Chen Y, Sadek M A. Determining parameters of a discrete element model for soiltool interaction [J]. Soil and Tillage Research, 2012, 118: 117-122. [40] Chen Y, Munkholm L J, Nyord T. A discrete element model for soilsweep interaction in three different soils [J]. Soil and Tillage Research, 2013, 126: 34-41. [41] Obermayr M, Vrettos C, Eberhard P, et al. A discrete element model and its experimental validation for the prediction of draft forces in cohesive soil [J]. Journal of Terramechanics, 2014, 53: 93-104. [42] 方会敏, 姬长英, Farman Ali Chandio, 等. 基于离散元法的旋耕过程土壤运动行为分析[J]. 农业机械学报, 2016, 47(3): 22-28. Fang Huimin, Ji Changying,Farman Ali Chandio, et al. Analysis of soil dynamic behavior during rotary tillage based on distinct element method [J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(3): 22-28. [43] Ucgul M, Saunders C, Fielke J M. Discrete element modelling of tillage forces and soil movement of a onethird scale mouldboard plough [J]. Biosystems Engineering, 2017, 155: 44-54. [44] Milkevych V, Munkholm L J, Chen Y, et al. Modelling approach for soil displacement in tillage using discrete element method [J]. Soil and Tillage Research, 2018, 183: 60-71. [45] Qi L, Chen Y, Sadek M. Simulations of soil flow properties using the discrete element method (DEM) [J]. Computers and Electronics in Agriculture, 2019, 157: 254-260. [46] Hoseinian S H, Hemmat A, Esehaghbeygi A, et al. Development of a dual sidewayshare subsurface tillage implement: Part 1. Modeling tool interaction with soil using DEM [J]. Soil and Tillage Research, 2022, 215: 105201. [47] 宋占华, 李浩, 闫银发, 等. 桑园土壤非等径颗粒离散元仿真模型参数标定与试验[J]. 农业机械学报, 2022, 53(6): 21-33. Song Zhanhua, Li Hao, Yan Yinfa, et al. Calibration method of contact characteristic parameters of soil in mulberry field based on unequaldiameter particles DEM theory [J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(6): 21-33. [48] Vyalov S S. Rheological fundamentals of soil mechanics [J]. Engineering Geology, 1986, 261: 102-102. [49] Karmakar S, Kushwaha R. Dynamic modeling of soiltool interaction: An overview from a fluid flow perspective [J]. Journal of Terramechanics, 2006, 43: 411-425. [50] Karmakar S, Kushwaha R L, Lagu C. Numerical modelling of soil stress and pressure distribution on a flat tillage tool using computational fluid dynamics [J]. Biosystems Engineering, 2007, 97(3): 407-414. [51] Luo F, Zhu L, Wei M,et al. Tillage condition effects on soil/plowbreast flow interaction of a horizontally reversible plowScienceDirect [J]. Procedia Manufacturing, 2019, 35: 980-985. [59] Wang T, Wang J, Zhang P. An improved support domain model of smoothed particle hydrodynamics method to simulate crack propagation in materials [J]. International Journal of Computational Methods, 2020, 17(10): 1950081. [53] Zhang L, Cai Z, Wang L, et al. Coupled EulerianLagrangian finite element method for simulating soiltool interaction [J]. Biosystems Engineering, 2018, 175: 96-105. [54] 董向前, 苏辰, 郑慧娜, 等. 基于DEMMBD耦合算法的振动深松土壤扰动过程分析[J]. 农业工程学报, 2022, 38(1): 34-43. Dong Xiangqian, Su Chen, Zheng Huina, et al. Analysis of soil disturbance process by vibrating subsoiling based on DEMMBD coupling algorithm [J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(1): 34-43. [55] Yu P, Peng X, Hu B, et al. Extension of 3-D coupled DDASPH method for dynamic analysis of soilstructure interaction problems [J]. Applied Mathematical Modelling, 2022, 111: 436-453. [56] 梁绍敏. 航天器着陆过程分析的离散元—有限元—多体动力学耦合算法及应用[D]. 大连: 大连理工大学, 2021. Liang Shaomin. DEMFEMMBD coupling algorithm for spacecraft landing process analysis and applications [D]. Dalian: Dalian University of Technology, 2021. |
[1] | 陆博远, 万霖, 车刚, 田雨琪, 刘威, 何树国. 旋转式水稻苗床平地机设计与试验[J]. 中国农机化学报, 2024, 45(4): 12-17. |
[2] | 周百冬, 牛琪, 喻炜, 谢守勇, , 王丽红, , 李成松, . 双螺旋振动式马铃薯供种装置离散元仿真及优化[J]. 中国农机化学报, 2024, 45(4): 23-31. |
[3] | 刘珂, 魏伟锋, , 朱纪跃, , 李高伟, 高震南. 田间机收元胡离散元模型参数标定与试验[J]. 中国农机化学报, 2024, 45(4): 32-38. |
[4] | 陈雨丰, 廖凯, 陈飞, 牛贺贺. 林地开沟机刀具优化设计与试验[J]. 中国农机化学报, 2024, 45(3): 38-43. |
[5] | 胡冬军, 闫建伟, 张珍, 黄昕, 牛素贞, 胡正军. 基于堆积试验的针形茶叶离散元仿真参数标定[J]. 中国农机化学报, 2024, 45(3): 66-73. |
[6] | 刘进宝, 郑炫, 杨怀君, 李帆, 王子龙, 张鲁云. 基于离散元的棉田仿生减阻犁体设计与试验[J]. 中国农机化学报, 2024, 45(2): 13-19. |
[7] | 李飞翔, 唐凯怿, 葛越锋, 杨大芳, 李得志, 马佳佳. 基于DEM的导种管优化设计方法研究[J]. 中国农机化学报, 2024, 45(2): 41-47. |
[8] | 卢博, 倪向东, 李克志, 李树峰, 齐庆征, 邵文平. 基于EDEM的高速穴播器排种性能仿真分析与试验[J]. 中国农机化学报, 2024, 45(2): 49-54. |
[9] | 王成军, 丁凡. 基于TRIZ理论的采茧机器人创新设计[J]. 中国农机化学报, 2024, 45(2): 244-249. |
[10] | 刘涵, 申屠留芳, 孙星钊, 王萌, 张鹏程. 基于响应面法的缢蛏壳肉分离装置工艺参数研究[J]. 中国农机化学报, 2024, 45(1): 122-129. |
[11] | 邓志远, 曹修全, 胡光忠, , 谢光玉, 王平. 基于DEM-MBD耦合的履带式全地形车辆爬坡特性研究[J]. 中国农机化学报, 2024, 45(1): 144-151. |
[12] | 陈远玲, 王梦乔, 金亚光, 侯怡, 李尚平. 基于离散元法的潮湿甘蔗复合肥参数标定[J]. 中国农机化学报, 2024, 45(1): 229-236. |
[13] | 吴家安, 李向军, 高明宇, 常传义, 刘恩宏. 板蓝根收获机挖掘装置设计与有限元分析[J]. 中国农机化学报, 2023, 44(9): 16-21. |
[14] | 陈宇, 张涛, 林通, 庞有伦, 李相, 罗书强. 基于EDEM的废菌棒粉碎分离机设计与试验[J]. 中国农机化学报, 2023, 44(9): 104-111. |
[15] | 戚得众, , 阮晓松, , 孙强, , 杨文广, , 高伟周, . 芒果碰撞损伤及行间运输车降损性能研究[J]. 中国农机化学报, 2023, 44(9): 112-116. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2021《中国农机化学报 》编辑部
地址:南京市玄武区中山门外柳营100号 邮编: Tel: 025-84346270,84346296