[1] 赵建敏, 芦建文. 基于字典学习的马铃薯叶片病害图像识别算法[J]. 河南农业科学, 2018, 47(4): 154-160.
Zhao Jianmin, Lu Jianwen. Identification algorithm of potato diseases on leaves using dictionary learning theory [J]. Journal of Henan Agricultural Sciences, 2018, 47(4): 154-160.
[2] Pal A, Kumar V. AgriDet: Plant leaf disease severity classification using agriculture detection framework [J]. Engineering Applications of Artificial Intelligence, 2023, 119: 105754.
[3] 赵建敏, 李艳, 李琦, 等. 基于卷积神经网络的马铃薯叶片病害识别系统[J]. 江苏农业科学, 2018, 46(24): 251-255.
Zhao Jianmin, Li Yan, Li Qi, et al. Potato leaf disease identification system based on convolutional neural network [J]. Jiangsu Agricultural Sciences, 2018, 46(24): 251-255.
[4] Chakraborty K K, Mukherjee R, Chakroborty C, et al. Automated recognition of optical image based potato leaf blight diseases using deep learning [J]. Physiological and Molecular Plant Pathology, 2022, 117: 101781.
[5] 赵越, 赵辉, 姜永成, 等. 基于深度学习的马铃薯叶片病害检测方法[J]. 中国农机化学报, 2022, 43(10): 183-189.
Zhao Yue, Zhao Hui, Jiang Yongcheng, et al. Detection method of potato leaf diseases based on deep learning [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(10): 183-189.
[6] 王林柏, 张博, 姚竟发, 等. 基于卷积神经网络马铃薯叶片病害识别和病斑检测[J]. 中国农机化学报, 2021, 42(11): 122-129.
Wang Linbai, Zhang Bo, Yao Jingfa, et al. Potato leaf disease recognition and potato leaf disease spot detection based on Convolutional Neural Network [J]. Journal of Chinese Agricultural Mechanization, 2021, 42(11): 122-129.
[7] 肖志云, 刘洪. 马铃薯典型病害图像自适应特征融合与快速识别[J]. 农业机械学报, 2017, 48(12): 26-32.
Xiao Zhiyun, Liu Hong. Adaptive features fusion and fast recognition of potato typical disease images [J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(12): 26-32.
[8] 章广传, 李彤, 何云, 等. 基于迁移模型集成的马铃薯叶片病害识别方法[J]. 江苏农业科学, 2023, 51(15): 216-224.
Zhang Guangchuan, Li Tong, He Yun, et al. A method for identifying potato leaf diseases based on migration model integration [J]. Jiangsu Agricultural Science, 2023, 51(15): 216-224.
[9] 邢鹏康, 李久朋. 基于小样本学习的马铃薯叶片病害检测[J]. 江苏农业科学, 2023, 51(15): 203-210.
Xing Pengkang, Li Jiupeng. Potato leaf disease detection based on small sample learning [J]. Jiangsu Agricultural Science, 2023, 51(15): 203-210.
[10] Zhou Ji, Li Jiuxi, Wang Chunshan, et al. A vegetable disease recognition model for complex background based on region proposal and progressive learning [J]. Computers and Electronics in Agriculture, 2021, 184: 106101.
[11] 刘阗宇, 冯全. 基于卷积神经网络的葡萄叶片检测[J]. 西北大学学报(自然科学版), 2017, 47(4): 505-512.
Liu Tianyu, Feng Quan. Detecting grape leaves based on convolutional neural network [J]. Journal of Northwest University (Natural Science Edition), 2017, 47(4): 505-512.
[12] Bifta S, Mdnahidul I, Mamunur R, et al. A real-time approach of diagnosing rice leaf disease using deep learning-based faster R-CNN framework [J]. PeerJ Computer Science, 2021, 7: e432.
[13] Prabhjot K, Shilpi H, Vinay G, et al. An approach for characterization of infected area in tomato leaf disease based on deep learning and object detection technique [J]. Engineering Applications of Artificial Intelligence, 2022, 115: 105210.
[14] 范振军, 李小霞. 基于ROI快速检测与融合特征的马铃薯病害识别[J]. 西南农业学报, 2019, 32(3): 544-550.
Fan Zhenjun, Li Xiaoxia. Recognition of potato diseases based on fast detection and fusion features of ROI [J]. Southwest China Journal of Agricultural Sciences, 2019, 32(3): 544-550.
[15] Kavitha R, Savarimuthu N, Savarimuthu N. DPD-DS for plant disease detection based on instance segmentation[J]. Journal of Ambient Intelligence and Humanized Computing, 2021: 1-11.
[16] Mao B, Wang L, Xiang S, et al. Task-aware adaptive attention learning for few-shot semantic segmentation [J].Neurocomputing, 2022, 494: 104-115.
[17] 卢珊妹, 郭强, 王任, 等. 基于多特征注意力循环网络的显著性检测[J]. 计算机辅助设计与图形学学报, 2020, 32(12): 1926-1937.
Lu Shanmei, Guo Qiang, Wang Ren, et al. Salient object detection using multi-scale features with attention recurrent mechanism [J]. Journal of Computer-Aided Design & Computer Graphics, 2020, 32(12): 1926-1937.
[18] 杨国峰, 杨勇. 基于BERT的常见作物病害问答系统问句分类[J]. 计算机应用, 2020, 40(6): 1580-1586.
Yang Guofeng, Yang Yong. Question classification of common crop disease question answering system based on BERT [J]. Journal of Computer Applications, 2020, 40(6): 1580-1586.
[19] 徐艳蕾, 孔朔琳, 陈清源, 等. 基于Transformer的强泛化苹果叶片病害识别模型[J]. 农业工程学报, 2022, 38(16): 198-206.
Xu Yanlei, Kong Shuolin, Chen Qingyuan, et al. Model for identifying strong generalization apple leaf disease using Transformer [J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(16):198-206.
[20] Zhong Y, Yang J, Zhang P, et al. RegionCLIP: Region-based language-image pretraining [C]. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022: 16793-16803.
[21] Yang K, Deng J, An X, et al. ALIP: Adaptive language-image pre-training with synthetic caption [C]. Proceedings of the IEEE/CVF International Conference on Computer Vision, 2023: 2922-2931.
[22] Chen Yipeng, Xu Ke, Zhou Peng, et al. Improved cross entropy loss for noisy labels in vision leaf disease classification [J]. IET Image Processing, 2022, 16(6): 1511-1519.
[23] 杜海顺, 张春海, 安文昊, 等. 基于多层信息融合和显著性特征增强的农作物病害识别[J]. 农业机械学报, 2023, 54(7): 214-222.
Du Haishun, Zhang Chunhai, An Wenhao, et al. Crop disease recognition based on multi-layer information fusion and saliency feature enhancement [J]. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54(7): 214-222.
(上接第206页)
Luo Cailian, Yang Han, Li Peng, et al. 3D reconstruction of maize plants based on consumer depth camera [J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(7): 222-228.
[19] 黄成龙, 李曜辰, 骆树康, 等. 基于结构光三维点云的棉花幼苗叶片性状解析方法[J]. 农业机械学报, 2019, 50(8): 243-248, 288.
Huang Chenglong, Li Yaochen, Luo Shukang, et al. Cotton seedling leaf traits extraction method from 3D Point Cloud based on structured light imaging [J]. Transactions of the Chinese Society for Agricultural Machinery, 2019, 50(8): 243-248, 288.
[20] 梁秀英, 周风燃, 陈欢, 等. 基于运动恢复结构的玉米植株三维重建与性状提取[J]. 农业机械学报, 2020, 51(6): 209-219.
Liang Xiuying, Zhou Fengran, Chen Huan, et al. Three-dimensional maize plants reconstruction and traits extraction based on structure from motion [J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(6): 209-219.
[21] 尚业华, 张光强, 孟志军, 等. 基于欧氏聚类的三维激光点云田间障碍物检测方法[J]. 农业机械学报, 2022, 53(1): 23-32.
Shang Yehua, Zhang Guangqiang, Meng Zhijun, et al. Field obstacle detection method of 3D LiDAR Point Cloud based on Euclidean clustering [J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(1): 23-32.
[22] 胡春华, 刘炫, 计铭杰, 等. 基于SegNet与三维点云聚类的大田杨树苗叶片分割方法[J]. 农业机械学报, 2022, 53(6): 259-264.
Hu Chunhua, Liu Xuan, Ji Mingjie, et al. Single poplar leaf segmentation method based on SegNet and 3D point cloud clustering in field [J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(6): 259-264.
[23] 张雪, 郭彩玲, 宗泽, 等. 基于轮廓分割的草莓叶片三维建模[J]. 农业工程学报, 2017, 33(S1): 206-211.
Zhang Xue, Guo Cailing, Zong Ze, et al. 3D reconstruction of strawberry leaves based on contour segmentation [J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(S1):206-211.
[24] 李艳君, 黄康为, 项基, 等. 基于立体视觉的动态鱼体尺寸测量[J]. 农业工程学报, 2020, 36(21): 220-226.
Li Yanjun, Huang Kangwei, Xiang Ji, et al. Measurement of dynamic fish dimension based on stereoscopic vision [J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(21): 220-226.
[25] 孙国祥, 汪小旵, 刘景娜, 等. 基于相位相关的温室番茄植株多模态三维重建方法[J]. 农业工程学报, 2019, 35(18): 134-142.
Sun Guoxiang, Wang Xiaochan, Liu Jingna, et al. Multi-modal three-dimensional reconstruction of greenhouse tomato plants based on phase-correlation method [J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(18): 134-142.
|