[1] 葛宜元, 庄明辉, 张金波, 等. 典型表面工程技术在农机耕作部件上的应用现状[J]. 农机使用与维修, 2015(9): 35-37.
[2] 苑仁月, 白雪卫, 李浩喆, 等. 农机耕作零部件表面改性技术研究及展望[J]. 真空, 2022, 59(3): 57-62.
Yuan Renyue, Bai Xuewei, Li Haozhe, et al. Research and prospect on surface modification of agricultural machinery farming parts [J]. Vacuum, 2022, 59(3): 57-62.
[3] 宋月鹏, 王伟, 高东升, 等. 基于表面工程技术制备农机刃具的研究现状[J]. 中国农机化学报, 2018, 39(1): 27-31.
Song Yuepeng, Wang Wei, Gao Dongsheng, et al. Research status of agricultural machine cutting tools treated by surface engineering technology [J]. Journal of Chinses Agricultural Mechanization, 2018, 39(1): 27-31.
[4] Yazici A. Investigation of the reduction of mouldboard ploughshare wear through hot stamping and hardfacing processes [J]. Turkish Journal of Agriculture and Forestry, 2011, 35(5): 461-468.
[5] Singh J, Chatha S S, Sidhu S B. Abrasive wear behavior of newly developed weld overlaid tillage tools in laboratory and in actual field conditions[J]. Journal of Manufacturing Processes, 2020, 55: 143-152.
[6] 熊平原. 旋耕刀三向工作阻力及耐磨性研究[D]. 广州: 华南农业大学, 2019.
Xiong Pingyuan. Research on threeaxis working resistances and wearability of rotary blade [D]. Guangzhou: South China Agricultural University, 2019.
[7] 于海杰. 楔形减阻旋耕刀优化设计与试验[D]. 保定: 河北农业大学, 2019.
Yu Haijie. Optimal design and experiment of wedge drag reduction rotary blade[D]. Baoding: Hebei Agricultural University, 2019.
[8] 蒲岩岩. 东北地区田间触土部件磨损特性试验研究[D]. 佳木斯: 佳木斯大学, 2020.
Pu Yanyan. Northeast area experimental study on wear characteristics of soil contact in field[D]. Jiamusi: Jiamusi University, 2020.
[9] Aramide B, Pityana S, Sadiku R, et al. Improving the durability of tillage tools through surface modification—A review[J]. The International Journal of Advanced Manufacturing Technology, 2021, 116(1-2): 83-98.
[10] 吴志立, 赵建杰, 吴明亮, 等. 农机土壤工作部件耐磨强化研究进展[J]. 中国农机化学报, 2016, 37(8): 256-264.
Wu Zhili, Zhao Jianjie, Wu Mingliang, et al. Progress in wear resistance and surface modification of soil cultivating components for agricultural machinery [J]. Journal of Chinese Agricultural Mechanization, 2016, 37(8): 256-264.
[11] Terva J, Teeri T, Kuokkala V, et al. Abrasive wear of steel against gravel with different rocksteel combinations [J]. Wear, 2009, 267(11): 1821-1831.
[12] Saai A, Bjorge R, Dahl F, et al. Adaptation of laboratory tests for the assessment of wear resistance of drillbit inserts for rotarypercussive drilling of hard rocks [J]. Wear, 2020, 456-457: 203366.
[13] Yazici A. Wear behavior of carbonitridetreated ploughshares produced from 30MnB5 steel for soil tillage applications[J]. Metal Science and Heat Treatment, 2011, 53(5-6): 248-253.
[14] Er U, Par B. Wear of plowshare components in SAE 950C steel surface hardened by powder boriding[J]. Wear, 2005, 261(3): 251-255.
[15] 曹瑞文, 周平安. JMM型土壤磨粒磨损试验机及试验方法的研究[J]. 粮油加工与食品机械, 1981(6): 48-59.
[16] 李响, 来佑彬, 杨波, 等. 熔覆技术在农机触土部件上的应用现状与展望[J]. 真空, 2020, 57(1): 83-87.
Li Xiang, Lai Youbin, Yang Bo, et al. Application status and prospect of cladding technology on soilengaging components of agricultural machinery[J]. Vacuum, 2020, 57(1): 83-87.
[17] 熊平原, 王毅, 周玉梅, 等. 一种农机触土部件磨损试验机[P]. 中国专利: CN206433338, 2017-08-25.
[18] 周玉梅, 孔俊轩, 熊平原, 等. 一种农机触土部件磨损试验机[P]. 中国专利: CN212030884, 2020-11-27.
[19] Jerzy N, Klaudia O, ukasz K. Wear properties of nitridebonded silicon carbide under the action of an abrasive soil mass [J]. Materials, 2021, 14(8): 2043.
[20] Bedolla P, Vorlaufer G, Rechberger C, et al. Combined experimental and numerical simulation of abrasive wear and its application to a tillage machine component [J]. Tribology International, 2018, 127: 122-128.
[21] 李军, 金嗣淳, 王桂英, 等.土槽试验台研究综述[J]. 湖北理工学院学报, 2015, 31(5): 1-5.
Li Jun, Jin Sichun, Wang Guiying, et al. Review of study on soil bin testbed[J]. Journal of Hubei Polytechnic University, 2015, 31(5): 1-5.
[22] 刘俊杰, 杨存志, 杨旭. 室内土槽试验台发展研究[J]. 农机使用与维修, 2015(5): 110-111.
[23] Ani A O, Uzoejinwa B, Ezeama A, et al. Overview of soilmachine interaction studies in soil bins [J]. Soil & Tillage Research, 2018, 175: 13-27.
[24] 于艳, 尚书旗, 赵丽清, 等. 我国农机试验土槽研究现状分析[C]. 纪念中国农业工程学会成立三十周年暨中国农业工程学会2009年学术年会(CSAE 2009)论文集[A]. 山西, 2009.
[25] 贾云艳. 基于高速摄像技术微型土槽试验台的研制[D]. 长春: 吉林农业大学, 2014.
Jia Yunyan. The develop of micro soil bin based on the highspeed video technology [D]. Changchun: Jilin Agricultural University, 2014.
[26] 许洪斌, 梁举科, 徐涛金, 等. 微耕机旋转耕作部件土槽试验台设计[J]. 中国农机化学报, 2016, 37(9): 1-5, 19.
Xu Hongbin, Liang Juke, Xu Taojin, et al. Design on soil bin test rig for rotary tillage tool components of mini tiller cultivator[J]. Journal of Chinses Agricultural Mechanization, 2016, 37(9): 1-5, 19.
[27] Wang X, Zhang S, Pan H, et al. Effect of soil particle size on soilsubsoiler interactions using the discrete element method simulations [J]. Biosystems Engineering, 2019, 182: 138-150.
[28] 田斌, 吴建民, 胡靖明, 等. 新型免耕农业机械试验土槽的设计[J]. 甘肃农业大学学报, 2006, 41(1): 94-96.
Tian Bin, Wu Jianmin, Hu Jingming, et al. Design of new trial soil slot for notillage farm machinery [J]. Journal of Gansu Agricultural University, 2006, 41(1): 94-96.
[29] Asl H J, Singh S. Optimization and evaluation of rotary tiller blades: Computer solution of mathematical relations [J]. Soil & Tillage Research, 2009, 106(1): 1-7.
[30] Nalavade P P, Salokhe M V, Niyamapa T, et al. Performance of free rolling and powered tillage discs [J]. Soil & Tillage Research, 2010, 109(2): 87-93.
[31] 胡滨铠. 轻型土槽试验台车的设计与研究[D]. 福州: 福建农林大学, 2011.
Hu Binkai. The design and research of light soil bin testing trolley[D]. Fuzhou: Fujian Agricultural and Forestry University, 2011.
[32] 于艳, 尚书旗, 刘晓红. 新型土槽试验平台及测控系统的设计与应用[J]. 东北农业大学学报, 2011, 42(2): 69-73.
Yu Yan, Shang Shuqi, Liu Xiaohong. Design and application of new testing slots in the tracking control system[J]. Journal of Northeast Agricultural University, 2011, 42(2): 69-73.
[33] 吴泽全, 马君, 刘俊杰, 等. 环形土槽综合试验台设计[J]. 时代农机, 2018, 45(5): 214-215.
[34] 李永磊, 宋建农, 董向前, 等. 基于土槽试验台的旋转耕作部件试验装置设计[J]. 农业工程学报, 2012, 28(17): 38-43.
Li Yonglei, Song Jiannong, Dong Xiangqian, et al. Design of test device for rotary tiller components based on soil bin [J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(17): 38-43.
[35] Matin A M, Fielke M J, Desbiolles M J. Furrow parameters in rotary striptillage: Effect of blade geometry and rotary speed [J]. Biosystems Engineering, 2014, 118: 7-15.
[36] Ibrahmi A, Bentaher H, Hamza E, et al. Study the effect of tool geometry and operational conditions on mouldboard plough forces and energy requirement: Part 2. experimental validation with soil bin test[J]. Computers and Electronics in Agriculture, 2015, 117: 268-275.
[37] Fang H, Zhang Q, Chandio A F, et al. Effect of straw length and rotavator kinematic parameter on soil and straw movement by a rotary blade [J]. Engineering in Agriculture, Environment and Food, 2016, 9(3): 235-241.
[38] 王建萧, 田斌, 孙伟, 等. 小型试验土槽的设计和研究[J]. 农业装备与车辆工程, 2022, 60(2): 1-4.
Wang Jianxiao, Tian Bin, Sun Wei, et al. Design and research of small test soil bin[J]. Agricultural Equipment & Vehicle Engineering, 2022, 60(2): 1-4.
[39] Lotfi M, Amini S, Aghaei M. 3D FEM simulation of tool wear in ultrasonic assisted rotary turning [J]. Ultrasonics, 2018, 88: 106-114.
[40] Zhang G, Zhang Z, Xiao M, et al. Soilcutting simulation and parameter optimization of rotary blades threeaxis resistances by response surface method[J]. Computers and Electronics in Agriculture, 2019, 164: 104902.
[41] Tekeste Z M, Balvanz R L, Hatfield L J, et al. Discrete element modeling of cultivator sweeptosoil interaction: Worn and hardened edges effects on soiltool forces and soil flow [J]. Journal of Terramechanics, 2019, 82: 1-11.
[42] 雷智高. 高速犁犁体结构与工作参数对耕作阻力的影响研究[D]. 石河子: 石河子大学, 2020.
[43] 王学振. 土壤—带翼深松铲互作关系及其效应研究[D]. 杨凌: 西北农林科技大学, 2021.
Wang Xuezhen. Soilwinged subsoiler interactions and their effects [D]. Yangling: Northwest A & F University, 2021.
[44] Ucgul M, Saunders C. Simulation of tillage forces and furrow profile during soilmouldboard plough interaction using discrete element modelling[J]. Biosystems Engineering, 2020, 190: 58-70.
[45] 刘进宝, 郑炫, 孟祥金, 等. 犁体耕作阻力模型仿真分析与试验研究[J]. 干旱地区农业研究, 2022, 40(1): 264-274.
Liu Jinbao, Zheng Xuan, Meng Xiangjin, et al. Simulated analysis and experimental study on plough tillage resistance model [J]. Agricultural Research in the Arid Areas, 2022, 40(1): 264-274.
[46] 方会敏. 基于离散元法的秸秆—土壤—旋耕刀相互作用机理研究[D]. 南京: 南京农业大学, 2016.
Fang Huimin. Research on the strawsoilrotary blade interaction using discrete element method[D]. Nanjing: Nanjing Agricultural University, 2016.
[47] Pu C, Wei T, Lin Z, et al. Effect of varying remote cylinder speeds on ploughbreast performances in alternative shifting tillage [J]. Computers and Electronics in Agriculture, 2021, 181: 105963.
[48] Schramm F, Kalácska , Pfeiffer V, et al. Modelling of abrasive material loss at soil tillage via scratch test with the discrete element method[J]. Journal of Terramechanics, 2020, 91: 275-283.
[49] dám K, Patrick D B, Dieter F, et al. Abrasive wear behaviour of 27MnB5 steel used in agricultural tines [J]. Wear, 2020, 442-443: 203107.
|