[1] 朱卫江. 我国甘蔗机械化收获现状与发展路径选择[J]. 农机质量与监督, 2019(10): 30-32.
[2] 李炳杨. 广西甘蔗种植现状、问题及对策[J]. 热带农业科学, 2018, 38(4): 119-127.
Li Bingyang. The present situation, problems and countermeasures of sugarcane cultivation in Guangxi [J]. Chinese Journal of Tropical Agriculture, 2018, 38(4): 119-127.
[3] 罗全, 赵明, 李会校. 甘蔗不同播种方式对产量的影响[J]. 广西农业机械化, 2017(2): 22-24.
[4] 李荣喜, 刘立炫, 黄敏, 等. 甘蔗机械化种植对蔗种的要求[J]. 南方农业, 2018, 12(18): 21-22, 24.
[5] 韦欣海. 甘蔗种植的高产技术及实施要点[J]. 南方农业, 2018, 12(12): 29-30.
[6] 李尚平, 黄宗晓, 张伟, 等. 预切种式宽窄行甘蔗种植机单辊排种系统设计与试验[J]. 农业机械学报, 2020, 51(4): 113-121.
Li Shangping, Huang Zongxiao, Zhang Wei, et al. Experiments and design on singlerolled seedsowing system of preseedcutting sugarcane planters with wide and narrow row spacing[J]. Transactions of the Chinese Society of Agricultural Machinery, 2020, 51(4): 113-121.
[7] Chen, H., Xu G, J., Liu X, et al. Sugarcane stem nodes based on the maximum value points of the vertical projection function [J]. Ciência Rural, 2020, 50.
[8] Chen M, X. J, Cheng Q, et al. Sugarcane stem node detection based on wavelet analysis [J]. IEEE Access, 2021(9): 147933-147946.
[9] 黄亦其, 乔曦, 唐书喜, 等. 基于Matlab的甘蔗茎节特征分布定位与试验[J]. 农业机械学报, 2013, 44(10): 93-97, 232.
Huang Yiqi, Qiao Xi, Tang Shuxi, et al. Localization and test of characteristics distribution for sugarcane internode based on Matlab[J]. Transactions of the Chinese Society of Agricultural Machinery, 2013, 44(10): 93-97, 232.
[10] 陆尚平, 文友先, 葛维, 等. 基于机器视觉的甘蔗茎节特征提取与识别[J]. 农业机械学报, 2010, 41(10): 190-194.
Lu Shangping, Wen Youxian, Ge Wei, et al. Recognition and features extraction of sugarcane nodes based on machine vision [J]. Transactions of the Chinese Society for Agricultural Machinery, 2010, 41(10): 190-194.
[11] 石昌友, 王美丽, 刘欣然, 等. 基于机器视觉的不同类型甘蔗茎节识别[J]. 计算机应用, 2019, 39(4): 1208-1213.
Shi Changyou, Wang Meili, Liu Xinran, et al. Node recognition for different types of sugarcanes based on machine vision [J]. Journal of Computer Applications, 2019, 39(4): 1208-1213.
[12] 张卫正, 张伟伟, 张焕龙, 等. 基于高光谱成像技术的甘蔗茎节识别与定位方法研究[J]. 轻工学报, 2017, 32(5): 95-102.
Zhang Weizheng, Zhang Weiwei, Zhang Huanlong, et al. Research on identification and location method of sugarcane node based on hyperspectral imaging technology [J]. Journal of Light Industry, 2017, 32(5): 95-102.
[13] 黄亦其, 黄体森, 黄媚章, 等. 基于局部均值的甘蔗茎节识别[J]. 中国农机化学报, 2017, 38(2): 76-80.
Huang Yiqi, Huang Tisen, Huang Meizhang, et al. Recognition of sugarcane nodes based on local mean[J]. Journal of Chinese Agricultural Mechanization, 2017, 38(2): 76-80.
[14] 陆尚平. 基于机器视觉的甘蔗茎节识别与蔗芽检测研究[D]. 武汉: 华中农业大学, 2011.
[15] 张东红, 吴玉秀, 陈晨. 基于图像处理的甘蔗茎节识别与蔗芽检测[J]. 洛阳理工学院学报(自然科学版), 2019, 29(2): 67-72.
Zhang Donghong, Wu Yuxiu, Chen Chen. Sugarcane stem section identification and sugarcane bud detection based on image processing [J]. Journal of Luoyang Institute of Science and Technology (Natural Science Edition), 2019, 29(2): 67-72.
[16] 刘栩廷, 刘姣娣, 王明明, 等. 基于SVM的蔗种坏芽检测识别[J]. 石河子大学学报(自然科学版), 2022, 40(4): 481-486.
Liu Xuting, Liu Jiaodi, Wang Mingming, et al. Detection and recognition of sugarcane bad bud based on SVM[J]. Journal of Shihezi University (Natural Science): 2022, 40(4): 481-486.
[17] Song H, Peng J, Tuo N, et al. Study of sugarcane buds classification based on convolutional neural networks [J]. Intelligent Automation & Soft Computing, 2021, 27(2): 581-592.
[18] 梁永检. 甘蔗“健康种子”生产的关键技术研究[D]. 桂林: 广西大学, 2015.
[19] Everingham M, Eslami S M A, Gool L, et al. The pascal visual object classes challenge: A retrospective[J]. International Journal of Computer Vision, 2015, 111(1): 98-136.
[20] Bochkovskiy A, Wang C Y, Liao H Y M. Yolov4: Optimal speed and accuracy of object detection[J]. arXiv, 2020: 10934.
[21] Hu J, Shen L, Sun G. SqueezeandExcitation networks[C]. Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, 2018: 7132-7141.
[22] 吴奎, 向峰, 周顺, 等. 基于改进的YOLOv4-tiny钢卷端面缺陷检测[J]. 智能计算机与应用, 2022, 12(3): 22-27.
Wu Kui, Xiang Feng, Zhou Shun, et al. Defect detection of steel coil based on improved Yolov4-Tiny[J]. Intelligent Computer and Applications, 2022, 12 (3): 22-27.
|