[1]
Irani R A, Bauer R J, Warkentin A. A dynamic terramechanic model for small lightweight vehicles with rigid wheels and grousers operating in sandy soil [J]. Journal of Terramechanics, 2011, 48(4): 307-318.
[2]
Jayakumar P, Melanz D, MacLennan J, et al. Scalability of classical terramechanics models for lightweight vehicle applications incorporating stochastic modeling and uncertainty propagation [J]. Journal of Terramechanics, 2014, 54: 37-57.
[3]
Wasfy T M, Jayakumar P. Nextgeneration NATO reference mobility model complex terramechanics-Part 1: Definition and literature review [J]. Journal of Terramechanics, 2021, 96: 45-57.
[4]
Wasfy T M, Jayakumar P. Nextgeneration NATO reference mobility model complex terramechanics-Part 2: Requirements and prototype [J]. Journal of Terramechanics, 2021, 96: 59-79.
[5]
Gerhart G R. The Bekker model analysis for small robotic vehicles [J]. Advancements in Air Brake Systems, Truck Suspensions & Military Vehicle/Terrain Interface, 2004, 1: 86-95.
[6]
Contreras U, Li G, Foster C D, et al. Soil models and vehicle system dynamics [J]. Applied Mechanics Reviews, 2013, 65(4): 89-101.
[7]
Mason G L, Salmon J E, McLeod S, et al. An overview of methods to convert cone index to bevameter parameters [J]. Journal of Terramechanics, 2020, 87: 1-9.
[8]
Parker M, Stott A, Bodie M, et al. Vehicle mobility on highly organic soils [J]. Journal of Terramechanics, 2021, 98: 16-24.
[9]
Choi K K, Jayakumar P, Funk M, et al. Framework of reliabilitybased stochastic mobility map for next generation NATO reference mobility model [J]. Journal of Computational and Nonlinear Dynamics, 2019, 14(2): 10-21.
[10]
Gonzalez R, Jayakumar P, Iagnemma K. Generation of stochastic mobility maps for largescale route planning of ground vehicles: A case study [J]. Journal of Terramechanics, 2017, 69: 1-11.
[11]
Tang S, Yuan S, Hu J, et al. Modeling of steadystate performance of skidsteering for highspeed tracked vehicles [J]. Journal of Terramechanics, 2017, 73: 25-35.
[12]
Gorsich D J, Jayakumar P, Cole M P, et al. Evaluating mobility vs. latency in unmanned ground vehicles [J]. Journal of Terramechanics, 2018, 80: 11-19.
[13]
Nicolini A, Mocera F, SomàA. Multibody simulation of a tracked vehicle with deformable ground contact model [J]. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multibody Dynamics, 2018, 233(1): 152-162.
[14]
Yang C, Yang G, Liu Z, et al. A method for deducing pressuresinkage of tracked vehicle in rough terrain considering moisture and sinkage speed [J]. Journal of Terramechanics, 2018, 79: 99-113.
[15]
黄雪涛, 顾亮, 朱兴高, 等. 履带张紧力及其在履带环上的分布[J]. 北京理工大学学报, 2016, 36(3): 226-230.
Huang Xuetao, Gu Liang, Zhu Xinggao, et al. Track tension and its distribution on track link [J]. Transactions of Beijing Institute of Technology, 2016, 36(3): 226-230.
[16]
黄雪涛, 顾亮, 吕唯唯, 等. 履带张紧力及其影响因素分析[J]. 兵工学报, 2014, 35(7): 1110-1118.
Huang Xuetao, Gu Liang, Lü Weiwei, et al. Track tension and its influencing factors [J]. Acta Armamentarii, 2014, 35(7): 1110-1118.
[17]
孙术发, 任春龙, 李涛, 等. 基于履带式底盘的改进型森林消防车通过性[J]. 农业工程学报, 2018, 34(17): 61-67.
Sun Shufa, Ren Chunlong, Li Tao, et al. Trafficability analysis of improved forest fire engine based on crawler chasis [J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(17): 61-67.
[18]
鲍玉冬, 杨杰, 赵彦玲, 等. 基于轮壤接触力学行为的蓝莓采收机行走驱动系统设计[J]. 农业工程学报, 2020, 36(7): 43-52.
Bao Yudong, Yang Jie, Zhao Yanling, et al. Design of the walking driving system for a blueberry harvester based on contact mechanical behavior of wheelsoil [J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(7): 43-52.
[19]
谢虎, 黄雪涛, 韩柏和, 等. 基于拓扑优化的农用运输车辆减振技术研究[J]. 中国农机化学报, 2020, 41(1): 104-108.
Xie Hu, Huang Xuetao, Han Baihe, et al. Vibration reduction technology analysis of agricultural transport vehicle based on topology optimization [J]. Journal of Chinese Agricultural Mechanization, 2020, 41(1): 104-108.
[20]
陈继清, 黄仁智, 莫荣现, 等. 基于RecurDyn小型绿篱修剪机履带底盘越障性能分析与仿真[J]. 中国农机化学报, 2020, 41(10): 89-98.
Chen Jiqing, Huang Renzhi, Mo Rongxian, et al. Analysis and simulation of obstacle crossing performance of tracked chassis of small hedge trimmer based on RecurDyn [J]. Journal of Chinese Agricultural Mechanization, 2020, 41(10): 89-98
|