[1]
国家统计局. 国家统计局关于2020年粮食产量数据的公告[J]. 现代面粉工业, 2021, 35(1): 15.
[2]
我国粮食烘干机械化水平低产业生态有待改善[J]. 黑龙江粮食, 2017(4): 49, 51.
[3]
张应玲, 马朋, 易俊杰, 等. 远红外联合干燥技术在果蔬加工中的应用[J]. 农产品加工, 2020(18): 84-87.
Zhang Yingling, Ma Peng, Yi Junjie, et al. Application of farinfrared combined drying technology in fruit and vegetable processing [J]. Farm Products Processing, 2020(18): 84-87.
[4]
黄盛杰, 吴煜, 沈健民. 粮食干燥设备发展趋势——从热风干燥到石墨烯远红外辐射[J]. 江苏农机化, 2021(1): 33-36.
[5]
潘小勇. 流体力学与传热学[M]. 南昌: 江西高校出版社, 2019.
[6]
严薇. 红外辐射对储藏稻谷脂质代谢的影响研究[D]. 南京: 南京财经大学, 2020.
Yan Wei. Study on the effect of infrared radiation on lipid metabolism of stored rice [D]. Nanjing: Nanjing University of Finance and Economics, 2020.
[7]
Sakare P, Prasad N, Thombare N, et al. Infrared drying of food materials: recent advances [J]. Food Engineering Reviews, 2020, 12.
[8]
包兴. 连续式红外热风联合干燥机的设计与研究[D]. 呼和浩特: 内蒙古农业大学, 2020.
Bao Xing. Design and research of continuous infrared hot air combined dryer [D]. Hohhot: Inner Mongolia Agricultural University, 2020.
[9]
朱波, 曹伟伟, 王延相, 等. 新型碳纤维电加热辐射管的开发[J]. 工业加热, 2005(2): 40-42.
Zhu Bo, Cao Weiwei, Wang Yanxiang, et al. Development of new type carbon fiber electric heating radiator [J]. Industrial Heating, 2005(2): 40-42.
[10]
聂廷哲, 段常贵, 李善斌. 应用高发射率涂层改善燃气红外辐射器性能的研究[J]. 哈尔滨建筑大学学报, 2002(1): 77-80.
Nie Tingzhe, Duan Changgui, Li Shanbin. Use of highly emissive coatings for improvement of performance of gas infrared burner [J]. Journal of Harbin University of Civil Engineering and Architecture, 2002(1): 77-80.
[11]
单绍琪. 远红外—热风干燥结合保润剂对烟草保润性能及品质的研究[D]. 广州: 华南理工大学, 2020.
Shan Shaoqi. Study on the farinfraredhot air drying combined with humectant on the moisturizing performance and quality of tobacco [D]. Guangzhou: South China University of Technology, 2020.
[12]
单绍琪, 伍锦鸣, 文雅欣, 等. 点状远红外发射源及其组合的辐照特性[J]. 红外技术, 2021, 43(1): 79-88.
Shan Shaoqi, Wu Jinming, Wen Yaxin, et al. Irradiation characteristics of pointshaped farinfrared emission source and combination [J]. Infrared Technology, 2021, 43(1): 79-88.
[13]
丁超. 稻谷红外干燥的动力学特性及对稻米储藏品质的影响研究[D]. 南京: 南京农业大学, 2015.
Ding Chao. Studies on dynamics of infrared drying and its effects on rice storage quality [D]. Nanjing: Nanjing Agricultural University, 2015.
[14]
文雅欣. 远红外辐照-热风干燥八角的动力学及品质变化研究[D]. 广州: 华南理工大学, 2019.
Wen Yaxin. Study on kinetics and quality changes of illicium verum by far infrared radiationhot air (FIR-HA) drying [D]. Guangzhou: South China University of Technology, 2019.
[15]
曲文娟, 凡威, 朱亚楠, 等. 变温滚筒催化红外—热风干燥核桃营养品质研究[J]. 食品工业科技, 2021, 42(24): 205-215.
Qu Wenjuan, Fan Wei, Zhu Yanan, et al. Nutritive quality of walnut dried by variable temperature drum catalytic infraredhot air [J]. Science and Technology of Food Industry, 2021, 42(24): 205-215.
[16]
刘春山. 远红外对流组合谷物干燥机理与试验研究[D]. 长春: 吉林大学, 2014.
Liu Chunshan.The mechanism and experimental study on farinfrared radiation and convection method for grain drying [D]. Changchun: Jilin University, 2014.
[17]
Dostie M, Seguin J N, Maure D, et al. Preliminary measurements on the drying of thick porous materials by combinations of intermittent infrared and continuous convection heating [J]. Drying, 1989: 513-520.
[18]
Swasdisevi T, Devahastin S, SaAdchom P, et al. Mathematical modeling of combined farinfrared and vacuum drying banana slice [J]. Journal of Food Engineering, 2009, 92(1): 100-106.
[19]
Mitrevski V, Mitrevska C, Geramitcioski T, et al. Drying kinetics and mathematical modeling of farinfra red vacuum drying of some vegetables and fruits [J]. Applied Engineering Letters, 2017, 2(3).
[20]
Vangelce M, Aleksandar D, Cvetanka M, et al. Mathematical modelling of farinfrared vacuum drying of apple slices [J]. Thermal Science, 2019, 23(1).
[21]
孙悦. 刺梨干燥过程研究及干燥对其有效成分、活性的影响[D]. 贵阳: 贵州大学, 2019.
Sun Yue. Study on the drying process of rosa roxburghii and the effect of drying on the active components and activity [D]. Guiyang: Guizhou University, 2019.
[22]
Somkiat J, Jatuphong V, Tanongkiat K. Influence of drying method on drying kinetics and qualities of longan fruit leather [J]. Maejo International Journal of Science and Technology, 2015, 9(1).
[23]
Rattapon S, Ampawan T, S M G. Effect of farinfrared radiation assisted microwavevacuum drying on drying characteristics and quality of red chilli [J]. Journal of food science and technology, 2015, 52(5).
[24]
Alwi H, Zaki N A M, Radzi N C, et al. Heat effects from farinfrared source towards antioxidant activity in Aquilaria subintegra Leaves [J]. Materials Science Forum, 2017: 4382.
[25]
Dan H, Pei Y, Xiaohong T, et al. Application of infrared radiation in the drying of food products [J]. Trends in Food Science & Technology, 2021: 110.
[26]
Nosrati M, Zare D, Singh C B, et al. New approach in determination of moisture diffusivity for rough rice components in combined farinfrared drying by finite element method [J]. Drying Technology, 2020, 38(13).
[27]
葛世明. 红外加热50年——从低温辐射到高红外[C]. 全国第十七届红外加热暨红外医学发展研讨会, 中国山东青岛, 2019: 52-59.
[28]
李武强, 万芳新, 韦博, 等. 胡萝卜切片超声远红外干燥工艺的优化[J]. 西北农林科技大学学报(自然科学版), 2020, 48(2): 110-118.
Li Wuqiang, Wan Fangxin, Wei Bo, et al. Optimization of ultrasonic far infrared drying process for carrot slices [J]. Journal of Northwest A & F University(Natural Science Edition), 2020, 48(2): 110-118.
[29]
杜利平. 金银花和丹参远红外鼓风干燥动力学及水分散失机制[D]. 泰安: 山东农业大学, 2017.
Du Liping. Infraredforced air drying dynamics and moisture loss mechanism of Lonicera Japonica and Salvia miltiorrhizabunge [D]. Taian: Shandong Agricultural University, 2017.
[30]
刘宗博, 张钟元, 李大婧, 等. 双孢菇远红外干燥过程中内部水分的变化规律[J]. 食品科学, 2016, 37(9): 82-86.
Liu Zongbo, Zhang Zhongyuan, Li Dajing, et al. Analysis of moisture change during farinfrared drying of Agaricusbisporus [J]. Food Science, 2016, 37(9): 82-86.
[31]
李哲, 赵振华, 玄静, 等. 金银花干燥加工研究进展[J]. 辽宁中医药大学学报, 2019, 21(8): 156-159.
Li Zhe, Zhao Zhenhua, Xuan Jing, et al. Research progress of primary processing of Lonicerae Japonicae Flos [J]. Journal of Liaoning University of Traditional Chinese Medicine, 2019, 21(8): 156-159.
[32]
罗燕. 当归切片真空远红外干燥特性及传热传质机理研究[D]. 兰州: 甘肃农业大学, 2021.
Luo Yan. Study on dry characteristics and heat and mass transfer mechanism of angelica sinensis slices in vacuum far infrared drying [D]. Lanzhou: Gansu Agricultural University, 2021.
[33]
汪喜波, 胡琼, 肖波, 等. 稻谷红外辐射与对流联合干燥过程的模型模拟[J]. 农业机械学报, 2013, 44(9): 145-151.
Wang Xibo, Hu Qiong, Xiao Bo, et al. Modeling simulation of combined convective and infrared radiation in rice drying process [J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(9): 145-151.
[34]
吴敏, 段豪, 王振文, 等. 基于温湿度控制的红外热风联合干燥机设计与试验[J]. 农业机械学报, 2020, 51(S1): 483-492.
Wu Min, Duan Hao, Wang Zhenwen, et al. Design and experiment of infraredhot air combined dryer based on temperature and humidity control [J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(S1): 483-492.
[35]
车兴文, 丁羽, 许威广. 远红外真空干燥技术在红枣片加工中的应用现状[J]. 湖北农机化, 2020(2): 71-73.
[36]
车兴文. 远红外真空干燥冬枣片干燥特性及品质研究[D]. 阿拉尔: 塔里木大学, 2020.
Che Xingwen. Study on drying characteristics and quality of farinfraredvacuum dried winter jujube slices [D]. Alaer: Tarim University, 2020.
[37]
张卫鹏, 陈浩然, 范晓志, 等. 茯苓丁真空脉动干燥特性及多目标优化[J]. 食品与机械, 2021, 37(9): 91-98, 144.
Zhang Weipeng, Chen Haoran, Fan Xiaozhi, et al. Pulsed vacuum drying characteristics and multiobjective optimization of Poria cubes [J]. Food & Machinery, 2021, 37(9): 91-98, 144.
[38]
赵丽娟, 王丹丹, 李建国, 等. 枸杞真空远红外干燥特性及品质[J]. 天津科技大学学报, 2017, 32(5): 17-22.
Zhao Lijuan, Wang Dandan, Li Jianguo, et al. Drying characteristics and product quality of Lycium barbarum in vacuum farinfrared drying process [J]. Journal of Tianjin University of Science & Technology, 2017, 32(5): 17-22.
[39]
潘旭, 许保海, 张静, 等. 远红外辅助脉冲真空干燥与传统干燥方法对枸杞子制干效果对比研究[J]. 中国现代中药, 2022, 24(3): 505-509.
Pan Xu, Xu Baohai, Zhang Jing, et al. Drying effects of farinfrared radiation heating assisted pulsed vacuum drying (FIR-PVD) and traditional drying methods on Lycium barbarum: A comparative analysis [J]. Modern Chinese Medicine, 2022, 24(3): 505-509.
[40]
唐凌. 一种节能的智能红外微波干燥器[P]. 中国专利: 210154269U, 2020-03-17.
[41]
何胜生. 地瓜干远红外—微波烘干新工艺的研究[J]. 食品科技, 2016, 41(5): 54-58.
He Shengsheng. New technology of sweet potato stem farinfrared microwave drying [J]. Food Science and Technology, 2016, 41(5): 54-58.
[42]
刘正怀, 傅美贞, 王俊. 远红外—微波联合干燥香菇的试验研究[J]. 金华职业技术学院学报, 2018, 18(3): 49-53.
Liu Zhenghuai, Fu Meizhen, Wang Jun. Experimental study on farinfrared and microwave combined drying of Lentinus [J]. Journal of Jinhua Polytechnic, 2018, 18(3): 49-53.
[43]
司旭. 树莓联合干燥及制粉关键技术研究[D]. 北京: 中国农业科学院, 2015.
Si Xu. Research on the combined drying and superfine pulverization technology of Raspberries [D]. Beijing: Chinese Academy of Agricultural Sciences, 2015.
[44]
邹三全, 刘显茜, 赵振超, 等. 猕猴桃切片流化床干燥特性与干燥动力学模型研究[J]. 食品与机械, 2021, 37(4): 150-156.
Zou Sanquan, Liu Xianxi, Zhao Zhenchao, et al. Study on drying characteristics and drying kinetic model of kiwi fruit slices in fluidized bed [J]. Food & Machinery, 2021, 37(4): 150-156.
[45]
颜建春, 谢焕雄, 魏海, 等. 一种基于石墨烯远红外加热的流化床干燥机及其干燥方法[P]. 中国专利: 113606872A, 2021-11-05.
[46]
杨大恒, 付健, 李晓燕. 食品红外辅助冷冻干燥技术的研究进展[J]. 包装工程, 2021, 42(3): 100-106.
Yang Daheng, Fu Jian, Li Xiaoyan. Researchprogress of infrared assisted freezedrying technology for food [J]. Packaging Engineering, 2021, 42(3): 100-106.
[47]
陈曦. 连续式横流粮食烘干塔粮食出机含水率的预测控制研究[D]. 乌鲁木齐: 新疆大学, 2019.
[48]
王波. 基于石墨烯等离激元的hBN和VO2薄膜结构的近场辐射换热研究[D]. 烟台: 烟台大学, 2021.
Wang Bo. Research on nearfield thermal radiation of hBN and VO2 thin films structure based on graphene plasmons [D]. Yantai: Yantai University, 2021.
[49]
王阳, 水珊珊, 王霞. 远红外在生物医学临床上的应用及其作用机制[J]. 科技导报, 2014, 32(30): 80-84.
Wang Yang, Shui Shanshan, Wang Xia. Molecular mechanism of farinfrared therapy and its applications in biomedicine [J]. Science & Technology Review, 2014, 32(30): 80-84.
[50]
张颖达. 粮食烘干机行业现状谈[J]. 农机市场, 2019(5): 17-20.
|