[1]
张敏, 钟志堂, 金梅, 等. 江苏省油菜生产现状与问题分析[J]. 中国农机化学报, 2021, 42(8): 209-213, 236.
Zhang Min, Zhong Zhitang, Jin Mei, et al. Current status and problems facing rapeseed production in Jiangsu Province [J]. Journal of Chinese Agricultural Mechanization, 2021, 42(8): 209-213, 236.
[2]
冷博峰, 李先容, 陈雪婷, 等. 2008—2019年中国油菜生产性状变化趋势[J]. 中国油料作物学报, 2021, 43(2): 171-185.
Leng Bofeng, Li Xianrong, Chen Xueting, et al. Variation trend of rapeseed production in China from 2008 to 2019 [J]. Chinese Journal of Oil Crop Sciences, 2021, 43(2): 171-185.
[3]
万星宇, 廖庆喜, 廖宜涛, 等. 油菜全产业链机械化智能化关键技术装备研究现状及发展趋势[J]. 华中农业大学学报, 2021, 40(2): 24-44.
Wan Xingyu, Liao Qingxi, Liao Yitao, et al. Situation and prospect of key technology and equipment in mechanization and intelligentization of rapeseed whole industry chain [J]. Journal of Huazhong Agricultural University, 2021, 40(2): 24-44.
[4]
廖庆喜, 王昌, 何坤, 等. 油菜联合收获后含杂油菜籽复清机设计与试验[J]. 农业机械学报, 2021, 52(10): 175-185, 232.
Liao Qingxi, Wang Chang, He Kun, et al. Design and experiment on recleaning machine for rapeseed after combine harvesting [J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(10): 175-185, 232.
[5]
陈进, 张帅, 李耀明, 等. 联合收获机水稻破碎籽粒及杂质在线识别方法[J]. 中国农机化学报, 2021, 42(6): 137-144.
Chen Jin, Zhang Shuai, Li Yaoming, et al. Research on online identification system of rice broken impurities in combine harvester [J]. Journal of Chinese Agricultural Mechanization, 2021, 42(6): 137-144.
[6]
张猛, 耿爱军, 张智龙, 等. 谷物收获机智能监测系统研究现状与发展趋势[J]. 中国农机化学报, 2018, 39(9): 85-90.
Zhang Meng, Geng Aijun, Zhang Zhilong, et al. Research status and development trend of intelligence monitoring system for grain harvester [J]. Journal of Chinese Agricultural Mechanization, 2018, 39(9): 85-90.
[7]
陈进, 韩梦娜, 练毅, 等. 基于U-Net模型的含杂水稻籽粒图像分割[J]. 农业工程学报, 2020, 36(10): 174-180.
Chen Jin, Han Mengna, Lian Yi, et al. Segmentation of impurity rice grain images based on U-Net model [J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(10): 174-180.
[8]
陈满, 倪有亮, 金诚谦, 等. 基于机器视觉的大豆机械化收获质量在线监测方法[J]. 农业机械学报, 2021, 52(1): 91-98.
Chen Man, Ni Youliang, Jin Chengqian, et al. Online monitoring method of mechanized soybean harvest quality based on machine vision [J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(1): 91-98.
[9]
李海同, 陈旭, 王刚, 等. 基于图像特征和随机森林的油菜生物量估算[J]. 中国农机化学报, 2021, 42(12): 155-161.
Li Haitong, Chen Xu, Wang Gang, et al. Estimation of rapeseed biomass based on image features and random forest [J]. Journal of Chinese Agricultural Mechanization, 2021, 42(12): 155-161.
[10]
马志艳, 张徐康, 杨光友. 基于改进Mask R-CNN的水稻茎秆杂质分割方法研究[J]. 中国农机化学报, 2021, 42(6): 145-150.
Ma Zhiyan, Zhang Xukang, Yang Guangyou. Research on segmentation method of rice stem impurities based on Mask R-CNN [J]. Journal of Chinese Agricultural Mechanization, 2021, 42(6): 145-150.
[11]
万龙, 庞宇杰, 张若宇, 等. 机采籽棉收购环节含杂率快速检测系统研制[J]. 农业工程学报, 2021, 37(6): 182-189.
Wan Long, Pang Yujie, Zhang Ruoyu, et al. Rapid measurement system for the impurity rate of machinepicked seed cotton in acquisition [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(6): 182-189.
[12]
曾宏伟, 雷军波, 陶建峰, 等. 基于单目视觉的谷物联合收获机产量测量方法[J]. 农业机械学报, 2021, 52(12): 281-289.
Zeng Hongwei, Lei Junbo, Tao Jianfeng, et al. Yield monitoring for grain combine harvester based on monocular vision [J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(12): 281-289.
[13]
刘双喜, 孙林林, 付千悦, 等. 单粒谷物体积排液法精确测量研究[J]. 农业机械学报, 2018, 49(3): 36-42.
Liu Shuangxi, Sun Linlin, Fu Qianyue, et al. Accurate measurement of single grain volume draining method [J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(3): 36-42.
[14]
沈飞, 黄怡, 周曰春, 等. 基于光谱和图像信息融合的玉米霉变程度在线检测[J]. 食品科学, 2019, 40(16): 274-280.
Shen Fei, Huang Yi, Zhou Yuechun, et al. Online detection of mildew degree of maize based on spectral and image information fusion [J]. Food Science, 2019, 40(16): 274-280.
[15]
陈树人, 徐李, 尹建军, 等. 基于Micro-CT图像处理的稻谷内部损伤定量表征与三维重构[J]. 农业工程学报, 2017, 33(17): 144-151.
Chen Shuren, Xu Li, Yin Jianjun,et al. Quantitative characterization of grain internal damage and 3D reconstruction based on Micro-CT image processing [J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(17): 144-151.
[16]
蒋华伟, 杨震, 张鑫, 等. 图像去雾算法研究进展[J]. 吉林大学学报(工学版), 2021, 51(4): 1169-1181.
Jiang Huawei, Yang Zhen, Zhang Xin, et al. Research progress of image dehazing algorithms [J]. Journal of Jilin University (Engineering and Technology Edition), 2021, 51(4): 1169-1181.
[17]
Qin Yunchu, Luo Fugui, Li Mingzhen. A medical image enhancement method based on improved multiscale Retinex algorithm [J]. Journal of Medical Imaging and Health Informatics, 2020, 10(1): 152-157.
[18]
张立亚, 郝博南, 孟庆勇, 等. 基于HSV空间改进融合Retinex算法的井下图像增强方法[J]. 煤炭学报, 2020, 45(S1): 532-540.
Zhang Liya, Hao Bonan, Meng Qingyong, et al. Method of image enhancement in coal mine based on improved retex fusion algorithm in HSV space [J]. Journal of China Coal Society, 2020, 45(S1): 532-540.
[19]
王峰, 严利民. 一种亮度分区和导向滤波相结合的色调映射算法[J]. 液晶与显示, 2019, 34(10): 1000-1005.
Wang Feng, Yan Limin.Tone mapping algorithm combining luminance partitioning and guiding filtering [J]. Chinese Journal of Liquid Crystals and Displays, 2019, 34(10): 1000-1005.
[20]
刘帅兵, 杨贵军, 周成全, 等. 基于无人机遥感影像的玉米苗期株数信息提取[J]. 农业工程学报, 2018, 34(22): 69-77.
Liu Shuaibing, Yang Guijun, Zhou Chengquan, et al. Extraction of maize seedling number information based on UAV imagery [J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(22): 69-77.
|