English

中国农机化学报

中国农机化学报 ›› 2021, Vol. 42 ›› Issue (10): 198-205.DOI: 10.13733/j.jcam.issn.2095-5553.2021.10.28

• 中国农机化学报 • 上一篇    下一篇

农田平整度测量装置研究与预测分析

王雷;汪凌;杜治千;汪丛;刘铭;   

  1. 湖北工业大学湖北省农业机械工程研究设计院;
  • 出版日期:2021-10-05 发布日期:2021-10-05
  • 基金资助:
    国家重点研发计划项目(2017YFD0700304)

Research and predictive analysis of farmland leveling measurement devices

Wang Lei, Wang Ling, Du Zhiqian, Wang Cong, Liu Ming.    

  • Online:2021-10-05 Published:2021-10-05

摘要: 为准确测量农田平整度,测量装置采用超声波传感器间接测量与磁致伸缩位移传感器直接测量相结合,并通过姿态传感器与陀螺仪获取测量装置姿态辅助修正测量值,通过LSTM神经网络的不同数量训练集对其测量值进行趋势变化预测。试验结果表明,测量装置磁致伸缩位移传感器测量过程中稳定性优于超声波传感器,通过卡尔曼分布式融合数据能有效滤除噪声,再分别通过前10 s、前20 s与前30 s数据做训练集,来进行预测分析,其均方根误差平均值为2.42,平均绝对误差平均值为2.67。试验结果表明,Kalman滤波融合数据与预测数据的均方根误差与平均绝对误差较小,能准确反映与预测平整度变化趋势,使测量装置准确的测量农田平整度及预测变化趋势。

关键词: 平整度, 磁致伸缩位移传感器, 超声波传感器, LSTM神经网络

Abstract: In order to accurately measure the farmland levelness, the measuring device used in this paper combines the indirect measurements by the ultrasonic sensor and direct measurements by magnetostrictive displacement sensor, obtains the measuring device postureassisted correction measurement value by attitude sensor and gyroscope, and predicts the trend change of its measurement value by the different number of training sets of LSTM neural network. The test results show that the stability of the magnetostrictive displacement sensor is better than that of the ultrasonic sensor, and the noise can be effectively filtered by kalman distributed fusion data, and then through the first 10 s, the first 20 s, and the first 30 s data as training sets, respectively, to predict the analysis. The average root mean square error is 2.42 and the average absolute error is 2.67. The test results show that the root mean square error and the mean absolute error of the Kalman filter fusion data and the prediction data are small, which indicates that the measuring ddevice can accurately measure the farmland flatness and predict the changing trend.

Key words: flatness, magnetostrictive displacement transducers, ultrasonic sensors, LSTM neural network

中图分类号: