[ 1 ] 程维彪. 农村小型碾米机的使用与调整[J]. 中国农机装备, 2023(8): 97-101.
Cheng Weibiao. Use and adjustment of small rice mill in rural areas [J]. China Agricultural Machinery Equipment, 2023(8): 97-101.
[ 2 ] 江法霖. 基于追溯评价体系的稻谷加工企业的损耗评价及影响因素分析[D]. 武汉: 武汉轻工大学, 2021.
[ 3 ] 郭亚丽, 程科, 周娜, 等. 碾米机智能运维体系研究[J]. 粮食科技与经济, 2022, 47(4): 114-116.
[ 4 ] Takaoka M, Inohata K, Miyake T, et al. Development of trouble diagnosis technology of 50-W-grade micro wind turbine generator [J]. Electrical Engineering in Japan, 2011, 17(1): 33-39.
[ 5 ] Wang H C, Du W L. Intelligent diagnosis of rolling bearing compound faults based on device state dictionary set sparse decomposition feature extraction‑hidden Markov model [J]. Advances in Mechanical Engineering, 2020, 12(6): 1-12.
[ 6 ] Lu J, Yin Q, Li S. Rolling bearing composite fault diagnosis method based on enhanced harmonic vector analysis [J]. Sensors, 2023, 23(11): 5115.
[ 7 ] Audigier R, Lotufo R D A. Relationships between some watershed definitions and their tie‑zone transforms [J]. Image and Vision Computing, 2010, 28(10): 1472-1482.
[ 8 ] Liu F, Shang Z, Gao M, et al. Bearing failure diagnosis at time‑varying speed based on adaptive clustered fractional Gabor transform [J]. Measurement Science and Technology, 2023, 34(9): 95002.
[ 9 ] Li M, Xu D, Zhang D. The seeding algorithms for spherical k‑means clustering [J]. Journal of Global Optimization, 2020, 76(4): 695-708.
[10] Qin Y, Shi X. Fault diagnosis method for rolling bearings based on two‑channel CNN under unbalanced datasets [J]. Applied Sciences‑Basel, 2022, 12(17): 8474.
[11] Tian H, Wang A. A novel fault diagnosis system for blast furnace based on support vector machine ensemble [J]. ISIJ International, 2010, 50(5): 738-742.
[12] Ma C, Dai G, Zhou J. Short‑term traffic flow prediction for urban road sections based on time series analysis and LSTM_BiLSTM method [J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(6): 5615-5624.
[13] Ni X, Xiong Q, Kong Q, et al. Deep HystereticNet to predict hysteretic performance of RC columns against cyclic loading [J]. Engineering Structures, 2022, 273: 115103.
[14] Wang J, Guo J, Wang L, et al. A hybrid intelligent rolling bearing fault diagnosis method combining WKN—BiLSTM and attention mechanism [J]. Measurement Science and Technology, 2023, 34(8): 85106.
[15] Jin Y, Chen C, Zhao S. Multisource data fusion diagnosis method of rolling bearings based on improved multiscale CNN [J]. Journal of Sensors, 2021, 9(12): 1-17.
[16] 王晓芳, 李林轩. 碾米机的操作管理与故障分析处理[J]. 粮食加工, 2013, 38(6): 34-37.
[17] 谢佩霞. 碾米机的故障与排除[J]. 广西农业机械化, 1994(6): 34.
[18] Xue T, Wang H, Wu D. MobileNetV2 combined with fast spectral kurtosis analysis for bearing fault diagnosis [J] Electronics, 2022, 11(19): 3176.
[19] Sun J, Wen J, Yuan C, et al. Bearing fault diagnosis based on multiple transformation domain fusion and improved residual dense networks [J]. IEEE Sensors Journal, 2022, 22(2): 1541-1551.
[20] Ma J, Wang X. Compound fault diagnosis of rolling bearing based on ACMD Gini index fusion and AO—LSTM [J]. Symmetry, 2021, 13(12): 2386.
[21] Yang M, Liu W, Zhang W, et al. Bearing vibration signal fault diagnosis based on LSTM—Cascade CatBoost [J]. Journal of Internet Technology, 2022, 23(5): 1155-1161.
[22] Che C, Wang H, Ni X, et al. Hybrid multimodal fusion with deep learning for rolling bearing fault diagnosis [J]. Measurement, 2020, 173(7): 108655.
|