[1] 李雯雯. 国家粮食和物资储备局:“十四五”统筹推进粮食安全治理体系和治理能力现代化[J]. 中国粮食经济, 2021(5): 30-33.
[2] 郭利进, 王永旭. 基于XGBoost优化算法的储粮温度预测研究[J]. 粮食与油脂, 2022, 35(11): 78-82.
Guo Lijin, Wang Yongxu. Research on prediction of stored grain temperature based on XGBoost optimization algorithm [J]. Cereals & Oils, 2022, 35(11): 78-82.
[3] 黄琦兰, 王涛. 基于智能算法的储粮通风过程中温度场预测[J]. 保鲜与加工, 2022, 22 (3): 30-34.
Huang Qilan, Wang Tao. Temperature field prediction of grain storage ventilation process based on intelligent algorithm [J]. Storage and Process, 2022, 22(3): 30-34.
[4] 王赫, 曹毅, 李玉, 等. 基于改进粒子群算法的平房仓粮温BP神经网络预测模型建立[J]. 中国粮油学报, 2023, 38(6): 113-118.
Wang He, Cao Yi, Li Yu, et al. Prediction model of grain temperature in warehouse based on improved particle swarm optimization BP neural network [J]. Journal of the Chinese Cereals and Oils Association, 2023, 38(6): 113-118.
[5] 苑江浩, 郑丹, 孟祥雪, 等. 粮情监测预警技术研究进展[J]. 中国粮油学报, 2022, 37(11): 19-26.
Yuan Jianghao, Zheng Dan, Meng Xiangxue, et al. Research progress of grain monitoring and early warning technology [J].Journal of the Chinese Cereals and Oils Association, 2022, 37(11): 19-26.
[6] 苑江浩, 常青, 李燕羽, 等. 神经网络在粮食储藏领域中的应用概述[J]. 中国粮油学报, 2021, 36(2): 155-161.
Yuan Jianghao, Chang Qing, Li Yanyu, et al. Application of neural network in the field of grain storage [J]. Journal of the Chinese Cereals and Oils Association, 2021, 36(2): 155-161.
[7] 高松, 宋辉. 基于BP神经网络方法的高大平房仓温度场预测研究[J]. 粮油食品科技, 2015, 23(1): 94-97.
Gao Song, Song Hui. Prediction of the temperature field of high & large warehouse based on BP neural network [J]. Science and Technology of Cereals, Oils and Foods, 2015, 23(1): 94-97.
[8] 冯鸿超. 基于温湿度粮情的储粮安全风险预警模型及应用[D]. 郑州: 河南工业大学, 2019.
Feng Hongchao. Prewarning model of stored grain safety risk based on temperature and humidity and its application [D]. Zhengzhou: Henan University of Technology, 2019.
[9] 蒋思玮, 孙妍, 陈静, 等. 改进粒子群优化GRU网络的储粮温度预测方法[J]. 计算机与数字工程, 2023, 51(5): 1036-1041, 1156.
Jiang Siwei, Sun Yan, Chen Jing, et al. Grain storage temperature prediction method based on GRU network optimized by improved particle swarm optimization [J]. Computer & Digital Engineering, 2023, 51(5): 1036-1041, 1156.
[10] Xie Y, Zeng P, Chen J. Hybrid attentionbased improved temporal convolutional BiGRU approach for shortterm load forecasting [C]. Journal of Physics: Conference Series. IOP Publishing, 2024, 2703(1): 012052.
[11] Song Y, Luktarhan N, Shi Z, et al. TGA: A novel network intrusion detection method based on TCN, BiGRU and attention mechanism [J]. Electronics, 2023, 12(13): 2849.
[12] Limouni T, Yaagoubi R, Bouziane K, et al. Accurate one step and multistep forecasting of very shortterm PV power using LSTM-TCN model [J]. Renewable Energy, 2023, 205: 1010-1024.
[13] 吴晓丹, 范波, 王建祥, 等. 基于VMD-TCN-Attention的锂电池寿命预测[J]. 电源技术, 2023, 47 (10): 1319-1325.
Wu Xiaodan, Fan Bo, Wang Jianxiang. Life prediction of lithium battery based on VMD-TCN-Attention [J]. Chinese Journal of Power Sources, 2023, 47 (10): 1319-1325.
[14] Yang L, Wang S, Chen X, et al. Highfidelity permeability and porosity prediction using deep learning with the selfattention mechanism [J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 34 (7): 3429-3443.
[15] 刘森, 刘美, 贺银超, 等. 基于DCNN网络及Self-Attention-BiGRU机制的轴承剩余寿命预测[J].机电工程, 2024, 41(5): 786-796.
Liu Sen, Liu Mei, He Yinchao, et al. Residual life prediction of bearings based on DCNN network and Self-Attention-BiGRU mechanism [J]. Journal of Mechanical & Electrical Engineering, 2024, 41(5): 786-796.
[16] Zhao Z, Yun S, Jia L, et al. Hybrid VMD-CNN-GRUbased model for shortterm forecasting of wind power considering spatiotemporal features [J]. Engineering Applications of Artificial Intelligence, 2023, 121: 105982.
[17] Mahjoub S, ChrifiAlaoui L, Marhic B, et al. Predicting energy consumption using LSTM, multilayer GRU and drop-GRU neural networks [J]. Sensors, 2022, 22(11): 4062.
[18] Zhang Y, Zhang L, Sun D, et al. Shortterm wind power forecasting based on VMD and a hybrid SSA-TCN-BiGRU network [J]. Applied Sciences, 2023, 13(17): 9888.
[19] 邹智, 吴铁洲, 张晓星, 等. 基于贝叶斯优化CNN-BiGRU混合神经网络的短期负荷预测[J]. 高电压技术, 2022, 48(10): 3935-3945.
Zou Zhi, Wu Tiezhou, Zhang Xiaoxing, et al. Shortterm load forecast based on bayesian optimized CNN-BiGRU hybrid neural networks [J]. High Voltage Engineering, 2022, 48(10): 3935-3945.
|