English

中国农机化学报

中国农机化学报 ›› 2025, Vol. 46 ›› Issue (1): 91-98.DOI: 10.13733/j.jcam.issn.2095-5553.2025.01.014

• 农产品加工工程 • 上一篇    下一篇

基于智能算法的储粮通风温度预测

吕宗旺1, 2,柳航1, 2,孙福艳1, 2   

  1. 1. 河南工业大学信息科学与工程学院,郑州市,450001; 2. 粮食信息处理与控制教育部重点实验室,郑州市,450001
  • 出版日期:2025-01-15 发布日期:2025-01-24
  • 基金资助:
    国家重点研发计划课题(2017YFD0401004,2022YFD2100202)

Prediction of grain storage ventilation temperature based on intelligent algorithm

Lü Zongwang1, 2, Liu Hang1, 2, Sun Fuyan1, 2   

  1. 1.  College of Information Science and Engineering, Henan University of Technology, Zhengzhou, 450001, China;
    2. Key Laboratory of Grain Information Processing and Control, Ministry of Education, Zhengzhou, 450001, China
  • Online:2025-01-15 Published:2025-01-24

摘要: 在当前粮食安全日益受到关注的背景下,对储粮过程中的温度波动进行准确预测,并通过智能化的通风控制系统实现对储粮环境的优化管理成为亟待解决的问题。基于此,提出一种CNN-BiGRU-Attention网络模型,通过CNN提取特征图中时序数据之间的潜在关系,并将处理后的特征向量作为BiGRU网络的输入,根据粮情数据的时序特征,在BiGRU网络中加入Attention为粮情特征分配权重;以及采用IPSO优化模型超参数的多模型融合算法来预测粮堆温度。使用吉林省榆树某直属粮库的数据集验证该预测模型,结果显示:均方根误差RMSE为0.0469,平均绝对误差MAE为0.031 5,确定系数R2为0.992 5,与其他模型相比,有效地提高预测精度。通过将储粮温度预测功能应用于粮情测控系统中,实现机械通风智能化来保障粮食的安全储藏。

关键词: 储粮温度预测, 改进粒子群算法, 粮食储藏, 通风控制

Abstract: In the current context of increasing concern about food security, accurate prediction of temperature fluctuations during grain storage and optimal management of grain storage environment through intelligent ventilation control system have become urgent problems. Based on this, a CNN-BiGRU-Attention network model is proposed, in which the potential relationship between the temporal data in the feature map is extracted by CNN and the processed feature vector is used as the input to the BiGRU network, and according to the temporal characteristics of the grain data, Attention is added to the BiGRU network to assign weights to the grain features, as well as the multimodel fusion algorithm of IPSO optimization model hyperparametric is used to predict the grain pile temperature. The prediction model was validated by using a dataset from a directly-affiliated grain depot in Yushu, Jilin Province, and the results showed that the root-mean-square error (RMSE) was 0.0469, the mean absolute error (MAE) was 0.031 5, and the coefficient of determination  R2 was 0.992 5, which effectively improved the prediction accuracy compared with other models. By applying the storage temperature prediction function to the grain condition measurement and control system, the intelligentization of mechanical ventilation is realized to guarantee the safe storage of grain.

Key words: grain storage temperature prediction, improved particle swarm algorithm, grain storage, ventilation control

中图分类号: