[1] Yu Helong, Cheng Xianhe, Cheng Chen, et al. Apple leaf disease recognition method with improved residual network [J]. Multimedia Tools and Applications, 2022, 81(6): 7759-7782.
[2] Singh S, Gupta I, Gupta S, et al. Deep learning based automated detection of diseases from apple leaf images [J]. CMC-Computers, Materials and Continua, 2022, 71(1): 1849-1866.
[3] 孙长兰, 林海峰. 一种基于集成学习的苹果叶片病害检测方法[J]. 江苏农业科学, 2022, 50(20): 41-47.
Sun Changlan, Lin Haifeng. An apple tree disease detection method based on ensemble learning [J]. Jiangsu Agricultural Sciences, 2022, 50(20): 41-47.
[4] 潘仁勇, 张欣, 陈孝玉龙, 等. 基于DTS-ResNet的苹果叶片病害识别方法[J]. 国外电子测量技术, 2022, 41(9): 142-148.
Pan Renyong, Zhang Xin, Chen Xiaoyulong, et al. Recognition method of apple leaf disease based on DTS-ResNet [J]. Foreign Electronic Measurement Technology, 2022, 41(9): 142-148.
[5] Khan A I, Quadri S M K, Banday S. Deep learning for apple diseases: Classification and identification [J]. International Journal of Computational Intelligence Studies, 2021, 10(1): 1-12.
[6] Li Xiaopeng, Li Shuqin. Transformer help CNN see better: A lightweight hybrid apple disease identification model based on transformers [J]. Agriculture, 2022, 12(6): 884-890.
[7] 刘斌, 徐皓玮, 李承泽, 等. 基于快照集成卷积神经网络的苹果叶部病害程度识别[J]. 农业机械学报, 2022, 53(6): 286-294.
Liu Bin, Xu Haowei, Li Chengze, et al. Apple leaf disease identification method based on snapshot ensemble CNN [J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(6): 286-294.
[8] 朱世松, 马婉丽, 赵理山, 等. 基于改进的LinkNet的苹果叶片图像分割算法[J]. 浙江农业学报, 2023, 35(1): 202-214.
Zhu Shisong, Ma Wanli, Zhao Lishan, et al. Apple leaf image segmentation algorithm based on improved LinkNet [J]. Acta Agriculturae Zhejiangensis, 2023, 35(1): 202-214.
[9] 岳有军, 刘杰琼, 王红君, 等. 基于改进YOLOv3模型的苹果树叶片病斑检测[J]. 中国科技论文, 2021, 16(11): 1202-1208.
Yue Youjun, Liu Jieqiong, Wang Hongjun, et al. Detection of apple leaf diseased spots based on improved YOLOv3 model [J]. China Sciencepaper, 2021, 16(11): 1202-1208.
[10] 晁晓菲, 池敬柯, 张继伟, 等. 基于PSA-YOLO网络的苹果叶片病斑检测[J]. 农业机械学报, 2022, 53(8): 329-336.
Chao Xiaofei, Chi Jingke, Zhang Jiwei, et al. Apple leaf lesion detection based on PSA-YOLO network [J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(8): 329-336.
[11] 徐艳蕾, 孔朔琳, 陈清源, 等. 基于Transformer的强泛化苹果叶片病害识别模型[J]. 农业工程学报, 2022, 38(16): 198-206.
Xu Yanlei, Kong Shuolin, Chen Qingyuan, et al. Model for identifying strong generalization apple leaf disease using transformer [J]. Transactions of the Chinese Society of Agricultural Engineering, 2022, 38(16): 198-206.
[12] Hughes D P, Salathé M. An open access repository of images on plant health to enable the development of mobile disease diagnostics [J]. Computer Science, 2015.
[13] Jiang Zhencun, Wang Lingyang, Wu Qixin, et al. Computeraided diagnosis of retinopathy based on vision transformer [J]. Journal of Innovative Optical Health Sciences, 2022, 15(2): 108-119.
[14] Odusami M, Maskeliūnas R, Damasevicius R. Pixellevel fusion approach with vision transformer for early detection of alzheimers disease [J]. Electronics, 2023, 12(5): 12-18.
[15] Tian Yunong, Li En, Liang Zize, et al. Diagnosis of typical apple diseases: A deep learning method based on multiscale dense classification network [J]. Frontiers in Plant Science, 2021, 12(1): 69-82.
[16] Rehman Z U, Khan M A, Ahmed F, et al. Recognizing apple leaf diseases using a novel parallel realtime processing framework based on Mask R-CNN and transfer learning: An application for smart agriculture [J]. IET Image Processing, 2021, 15(10): 2157-2168.
[17] Di Jie, Li Qing. A method of detecting apple leaf diseases based on improved convolutional neural network [J]. PloS One, 2022, 17(2): 135-150.
[18] Yan Qian, Yang Baohua, Wang Wenyan, et al. Apple leaf diseases recognition based on an improved convolutional neural network [J]. Sensors, 2020, 20(12): 35-52.
|