中国农机化学报 ›› 2022, Vol. 43 ›› Issue (5): 156-164.DOI: 10.13733/j.jcam.issn.20955553.2022.05.023
李雪峰1, 2,李涛2,邱权2,樊正强2,孙娜2
出版日期:
2022-05-15
发布日期:
2022-05-17
基金资助:
Li Xuefeng, Li Tao, Qiu Quan, Fan Zhengqiang, Sun Na.
Online:
2022-05-15
Published:
2022-05-17
摘要: 果园移动机器人自主导航是实现果园智能机器人化作业的前提,是保障机器人在无人操控的情况下完成多功能作业的基础功能。介绍和分析果园移动机器人自主导航技术研究现状,重点讨论果园移动机器人不同导航技术、导航数据处理算法和导航控制策略。首先,针对单传感器果园导航存在的局限性,得出具有更高精度和鲁棒性的多传感器信息融合方案是未来果园导航主流趋势的结论;其次,介绍当前主流的果园导航数据处理算法,明确其对环境感知和路径规划的支撑作用;最后讨论果园移动机器人常用路径跟踪导航控制策略。通过对果园移动机器人自主导航研究现状进行较为全面的分析和介绍,有助于推动果园移动机器人研究的理论创新和快速发展。
中图分类号:
李雪峰, 李涛, 邱权, 樊正强, 孙娜. 果园移动机器人自主导航研究进展[J]. 中国农机化学报, 2022, 43(5): 156-164.
Li Xuefeng, Li Tao, Qiu Quan, Fan Zhengqiang, Sun Na.. Review on autonomous navigation for orchard mobile robots[J]. Journal of Chinese Agricultural Mechanization, 2022, 43(5): 156-164.
[1] 周建军, 周文彬, 刘建东, 等. 果园机器人自动导航技术研究进展[J]. 计算机与数字工程, 2019, 47(3): 571-576. Zhou Jianjun, Zhou Wenbin, Liu Jiandong, et al. Review of research on automatic navigation robot in orchard [J]. Computer & Digital Engineering, 2019, 47(3): 571-576. [2] 郭成洋, 范雨杭, 张硕, 等. 果园车辆自动导航技术研究进展[J]. 东北农业大学学报, 2019, 50(8): 87-96. Guo Chengyang, Fan Yuhang, Zhang Shuo, et al. Progress on vehicle automatic navigation in orchard [J]. Journal of Northeast Agricultural University, 2019, 50(8): 87-96. [3] 闫全涛, 李丽霞, 邱权, 等. 小型移动式农业机器人研究现状及发展趋势[J]. 中国农机化学报, 2019, 40(5): 178-186. Yan Quantao, Li Lixia, Qiu Quan, et al. Research status and development trends of smallmobile agricultural robots [J]. Journal of Chinese Agricultural Mechanization, 2019, 40(5): 178-186. [4] 张莎莎. 猕猴桃双机械臂协调采摘方法研究[D]. 杨凌: 西北农林科技大学, 2018. Zhang Shasha. Control method of dual arm picking robot for kiwifruit [D]. Yangling: Northwest A&F University, 2018. [5] 胡友呈. 自然环境下柑橘采摘机器人的目标识别与定位方法研究[D]. 重庆: 重庆理工大学, 2018. Hu Youcheng. Research on target recognition and location method of citrus picking robotin natural environment [D]. Chongqing: Chongqing University of Technology, 2018. [6] Davidsona J R, Hohimerb C J, Mob C, et al. Dual Robot Coordination for Apple Harvesting [J]. 2017 ASABE Annual International Meeting. American Society of Agricultural and Biological Engineers, 2017. [7] 贾耀文. 多功能果园避障除草机器人机械及控制系统设计[D]. 兰州: 兰州理工大学, 2020. Jia Yaowen. Mechanical structure design and control system research of multifunctional orchard obstacle avoidance weeding robot [D]. Lanzhou: Lanzhou University of Technology, 2020. [8] Ye Y, Wang Z, Jones D, et al. BinDog: A robotic platform for bin management in orchards [J]. Robotics, 2017, 6(2): 12. [9] 张漫, 季宇寒,李世超,等. 农业机械导航技术研究进展[J]. 农业机械学报, 2020, 51(4): 1-18. Zhang Man, Ji Yuhan, Li Shichao, et al. Research progress of agricultural machinery navigation technology [J]. Transactions of The Chinese Society of Agricultural Machinery, 2020, 51(4): 1-18. [10] Nrremark M, Griepentrog H W, Nielsen J, et al. The development and assessment of the accuracy of an autonomous GPSbased system for intrarow mechanical weed control in row crops [J]. Biosystems Engineering. 2008, 101(4): 396-410. [11] Min M, Ehsani R, Salyani M. Dynamic accuracy of GPS receivers in citrus orchards [J]. Applied Engineering in Agriculture, 2008. [12] Han J, Park C, Park Y, et al. Preliminary results of the development of a singlefrequency GNSS RTKbased autonomous driving system for a speed sprayer [J]. Journal of Sensors, 2019, 2019: 1-9. [13] Yin X, Wang Y, Chen Y, et al. Development of autonomous navigation controller for agricultural vehicles [J]. International Journal of Agricultural And Biological Engineering, 2020, 13(4): 70-76. [14] 孙娜, 王艳君, 邱权, 等. 激光传感器在农业中的应用[J]. 北方园艺, 2019(20): 150-156. Sun Na, Wang Yanjun, Qiu Quan, et al. Application of LiDAR in Agriculture [J]. Northern Horticulture, 2019(20): 150-156. [15] Jones M H, Bell J, Dredge D, et al. Design and testing of a heavyduty platform for autonomous navigation in kiwifruit orchards [J]. Biosystems Engineering, 2019, 187: 129-146. [16] 胡晨. 果园作业机器人定位与地图构建研究[D]. 南京: 南京农业大学, 2015. Hu Chen. Research on localization and map building for robot working in orchard [D]. Nanjing: Nanjing Agricultural University, 2015. [17] 周俊, 胡晨. 密植果园作业机器人行间定位方法[J]. 农业机械学报, 2015, 46(11): 22-28. Zhou Jun, Hu Chen. Interrow localization method for agricultural robot working in close planting orchard [J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(11): 22-28. [18] 邓志, 黎海超. 移动机器人的自动导航技术的研究综述[J]. 科技资讯, 2016, 14(33): 142-144. Deng Zhi, Li Haichao. Survey of research on mobile robot autonomous navigation technology [J]. Science & Technology Information, 2016, 14(33): 142-144. [19] Radcliffe J, Cox J, Bulanon D M. Machine vision for orchard navigation [J]. Computers in Industry, 2018, 98: 165-171. [20] DurandPetiteville A, Le Flecher E, Cadenat V, et al. Tree detection with lowcost threedimensional sensors for autonomous navigation in orchards [J]. IEEE Robotics and Automation Letters, 2018, 3(4): 3876-3883. [21] Singh R, Nagla K S. Comparative analysis of range sensors for the robust autonomous navigation-A review [J]. Sensor Review, 2019, 40(1): 17-41. [22] 魏少东. 基于GPS和惯性导航的果园机械导航系统研究[D]. 杨凌: 西北农林科技大学, 2013. Wei Shaodong. Research of navigation system for orchard mechanical based on gps and inertial navigation[D]. Yanling: Northwest A&F University, 2013. [23] 李延华. 自主移动果园作业机器人地头转向与定位研究[D]. 南京: 南京农业大学, 2016. Li Yanhua. Research on headland turning and localization for automatic robot operating in orchard [D].Nanjing: Nanjing Agricultural University, 2016. [24] Shalal N, Low T, Mccarthy C, et al. Orchard mapping and mobile robot localization using onboard camera and laser scanner data fusionPart B: Mapping and localization [J]. Computers and Electronics in Agriculture. 2015, 119: 267-278. [25] Kanagasingham S, Ekpanyapong M, Chaihan R. Integrating machine visionbased row guidance with GPS and compassbased routing to achieve autonomous navigation for a rice field weeding robot [J]. Precision Agriculture, 2020, 21(4): 831-855. [26] Costley A, Christensen R. Landmark aided GPSdenied navigation for orchards and vineyards: 2020 IEEE/ION Position, Location and Navigation Symposium (PLANS) [Z]. 2020. [27] Gao Y B, Liu S F, Atia M, et al. INS/GPS/LiDAR integrated navigation system for urban and indoor environments using hybrid scan matching algorithm[J]. Sensors. 2015, 15(9): 23286-23302. [28] JaegerHansen C L, Griepentrog H W, Andersen J C. Navigation and tree mapping in orchards [J]. International Conference of Agricultural Engineering, 2012. [29] 陈艳, 张漫, 马文强, 等. 基于GPS和机器视觉的组合导航定位方法[J]. 农业工程学报, 2011, 27(3): 126-130. Chen Yan, Zhang Man, Ma Wenqiang, et al. Positioning method of integrated navigation based on GPS and machine vision [J]. Transactions of the CSAE, 2011,27(3): 126-130. [30] Guevara J, Auat Cheein F A, GenéMola J, et al. Analyzing and overcoming the effects of GNSS error on LiDAR based orchard parameters estimation [J]. Computers and Electronics in Agriculture, 2020, 170: 105255. [31] Tang Y, Zhao J, Wang M, et al. Beidou navigation method based on intelligent computing and extended Kalman filter fusion [J]. Journal of Ambient Intelligence and Humanized Computing, 2019, 10(11): 4431-4438. [32] 籍颖, 张漫, 刘刚, 等. 基于改进粒子滤波的农用车辆导航定位方法[J]. 农业工程学报, 2011, 27(8): 227-231. Ji Ying, Zhang Man, Liu Gang, et al. Positioning method of vehicle navigation system based on improved particle filter [J]. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(8): 227-231. [33] Chiang K, Tsai G, Li Y, et al. Navigation Engine Design for Automated Driving Using INS/GNSS/3D LiDAR-SLAM and Integrity Assessment [J]. Remote Sensing, 2020, 12(10): 1564. [34] 冀鹏. 果园作业机器人自主导航控制系统研究与设计[D]. 南京: 南京理工大学, 2019. [35] Droeschel D, Behnke S. Efficient continuoustime slam for 3d lidarbased online mapping [J]. 2018. [36] Koide K, Miura J, Yokozuka M, et al. Interactive 3D Graph SLAM for Map Correction [J]. IEEE Robotics and Automation Letters. 2021, 6(1): 40-47. [37] 倪志康, 厉茂海, 林睿, 等. 基于三维激光雷达与RTK融合的SLAM研究[J]. 制造业自动化, 2020, 42(7): 51-54. Ni Zhikang, Li Maohai, Lin Rui, et al. Research on SLAM based on 3D Lidar and RTK fusion [J]. Manufacturing Automation, 2020, 42(7): 51-54. [38] Pierzchaa M, Giguère P, Astrup R. Mapping forests using an unmanned ground vehicle with 3D LiDAR and graphSLAM [J]. Computers and Electronics in Agriculture, 2018, 145: 217-225. [39] Lyu H, Park C, Han D, et al. Orchard free space and center line estimation using naive bayesian classifier for unmanned ground selfdriving vehicle [J]. Symmetry, 2018, 10(9): 355. [40] Gao G, Xiao K, Jia Y. A spraying path planning algorithm based on colourdepth fusion segmentation in peach orchards [J]. Computers and Electronics in Agriculture, 2020, 173: 105412. [41] 李秀智, 彭小彬, 方会敏, 等. 基于RANSAC算法的植保机器人导航路径检测[J]. 农业机械学报,2020, 51(9): 40-46. Li Xiuzhi, Peng Xiaobin, Fang Huimin, et al. Navigation path detection of plant protection robot based on RANSAC algorithm [J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(9): 40-46. [42] Li G, Yu L, Fei S. A deeplearning realtime visual SLAM system based on multitask feature extraction network and selfsupervised feature points [J]. Measurement, 2021, 168: 108403. [43] Kim W, Lee D, Kim Y, et al. Path detection for autonomous traveling in orchards using patchbased CNN [J]. Computers and Electronics in Agriculture. 2020, 175: 105620. [44] Ponnambalam V R, Bakken M, Moore R J D, et al. Autonomous crop row guidance using adaptive multiroi in strawberry fields [J]. Sensors, 2020, 20(18): 5249. [45] 韩振浩, 李佳, 苑严伟, 等. 基于U-Net网络的果园视觉导航路径识别方法[J]. 农业机械学报, 2021, 52(1): 30-39. Han Zhenhao, Li Jia, Yuan Yanwei, et al. Path Recognition of Orchard Visual Navigation Based on U-Net [J]. Transactions of the Chinese Society for Agricultural Machinery, 2021, 52(1): 30-39. [46] 王毅, 刘波, 熊龙烨, 等. 基于深度学习的果园道路导航线生成算法研究[J]. 湖南农业大学学报(自然科学版), 2019, 45(6): 674-678. Wang Yi, Liu Bo, Xiong Longye, et al. Research on generating algorithm of orchard road navigation line based on deep learning [J]. Journal of Hunan Agricultural University (Natural Sciences), 2019, 45(6): 674-678. [47] Zhang X, Li X, Zhang B, et al. Automated robust croprow detection in maize fields based on position clustering algorithm and shortest path method [J]. Computers and Electronics in Agriculture, 2018, 154: 165-175. [48] 张哲远. 果园机器人自主导航关键技术研究[D]. 武汉: 华中科技大学, 2016. Zhang Zheyuan. Research on the key technology of autonomous navigation for orchard mobile robot [D]. Wuhan: Huazhong University of Science and Technology, 2016. [49] 张向阳. 果园移动机器人导航与避障方法研究[D]. 合肥: 中国科学技术大学, 2020. Zhang Xiangyang. Research on navigation and obstacle avoidance method for orchard mobile robots [D]. Hefei: University of Science and Technology of China, 2020. [50] Barawid O C, Mizushima A, Ishii K, et al. Development of an autonomous navigation system using a twodimensional laser scanner in an orchard application [J]. Biosystems Engineering. 2007, 96(2): 139-149. [51] 陈子文, 李伟, 张文强, 等. 基于自动Hough变换累加阈值的蔬菜作物行提取方法研究[J]. 农业工程学报, 2019, 35(22): 314-322. Chen Ziwen, Li Wei, Zhang Wenqiang, et al. Vegetable crop row extraction method based on accumulation threshold of Hough Transformation [J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(22): 314-322. [52] Chen J, Qiang H, Wu J, et al. Navigation path extraction for greenhouse cucumberpicking robots using the predictionpoint Hough transform [J]. Computers and Electronics in Agriculture. 2021, 180: 105911. [53] 刘沛, 陈军, 张明颖. 基于激光导航的果园拖拉机自动控制系统[J]. 农业工程学报. 2011, 27(3): 196-199. Liu Pei, Chen Jun, Zhang Mingying. Automatic control system of orchard tractor based on laser navigation [J]. Transactions of the CSAE, 2011, 27(3): 196-199. [54] 吴应新, 吴剑桥, 杨雨航, 等. 油电混合果园自动导航车控制器硬件在环仿真平台设计与应用[J]. 智慧农业(中英文), 2020, 2(4): 149-164. Wu Yingxin, Wu Jianqiao, Yang Yuhang, et al. Design and application of hardwareintheloop simulation platform for AGV controller in hybrid orchard [J]. Smart Agriculture, 2020, 2(4): 149-164. [55] 熊中刚, 叶振环, 贺娟, 等. 基于免疫模糊PID的小型农业机械路径智能跟踪控制[J]. 机器人, 2015, 37(2): 212-223. Xiong Zhonggang, Ye Zhenhuan, He Juan, et al. Small agricultural machinery path intelligent tracking control based on fuzzy immune PID [J]. Robot, 2015, 37(2): 212-223. [56] 聂森. 基于组合信息的果园移动机器人检测系统研究[D]. 杨凌: 西北农林科技大学, 2016. Nie Sen. Orchard mobile robot detection systembased on combination information [D]. Yangling: Northwest A&F University, 2016. [57] Zhang S, Guo C, Gao Z, et al. Research on 2D Laser Automatic Navigation Control for Standardized Orchard [J]. Applied Sciences, 2020, 10(8): 2763. [58] 白晓平, 胡静涛, 高雷, 等. 农机导航自校正模型控制方法研究[J]. 农业机械学报, 2015, 46(2): 1-7. Bai Xiaoping, Hu Jingtao, Gao Lei, et al. Selftuning model control method for farm machine navigation [J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(2): 1-7. [59] 孟庆宽, 仇瑞承, 张漫, 等. 基于改进粒子群优化模糊控制的农业车辆导航系统[J]. 农业机械学报. 2015, 46(3): 29-36. Meng Qingkuan, Chou Ruicheng, Zhang Man, et al. Navigation system of agricultural vehicle based on fuzzy logic controller with improved particle swarm optimization algorithm [J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(3): 29-36. [60] 李会宾, 韩伟, 史云. 果园作业机器人的自主行间导航系统研究[J]. 中国农业信息, 2019, 31(4): 51-64. Li Huibin, Han Wei, Shi Yun. Autonomous interline navigation system for orchard robots [J]. China Agricultural Informatics, 2019, 31(4): 51-64. [61] 吴丛磊. 基于多源信息融合的果园拖拉机自主驾驶系统研究[D]. 南京: 东南大学, 2019. Wu Conglei. Research of autonomous driving system of tractor based on multisource information fusion in orchard [D]. Nanjing: Southeast University, 2019. [62] 熊斌, 张俊雄, 曲峰, 等. 基于BDS的果园施药机自动导航控制系统[J]. 农业机械学报. 2017, 48(2): 45-50. Xiong Bin, Zhang Junxiong, Qu Feng, et al. Navigation control system for orchard spraying machine Based on Beidou navigation satellite system [J]. Transactions of The Chinese Society of Agricultural Machinery, 2017, 48(2): 45-50. [63] 魏爽, 李世超, 张漫, 等. 基于GNSS的农机自动导航路径搜索及转向控制[J]. 农业工程学报, 2017, 33(S1): 70-77. Wei Shuang, Li Shichao, Zhang Man, et al. Automatic navigation path search and turning control of agricultural machinery based on GNSS [J]. Transactions of the Chinese Society of Agricultural Engineering, 2017,33(S1): 70-77. |
[1] | 代志伟, 程曼, 袁洪波, 蔡振江. 温室灌溉控制策略研究进展[J]. 中国农机化学报, 2022, 43(9): 63-72. |
[2] | 杨杭旭, 刘冬梅, 周俊, 汪珍珍, 王旭. 增程式电动拖拉机研究进展[J]. 中国农机化学报, 2022, 43(11): 118-125. |
[3] | 王潇, 张美娜, Zhou Jianfeng, 孙传亮, 吴茜, 曹静. LiDAR传感器及技术在农业场景的应用进展综述[J]. 中国农机化学报, 2022, 43(11): 155-164. |
[4] | 高鹏, 姜军生, 白阳, 宋健. 基于改进A*算法的果园移动机器人建图定位与路径规划方法与试验[J]. 中国农机化学报, 2022, 43(1): 142-149. |
[5] | 杨涛;李晓晓;. 机器视觉技术在现代农业生产中的研究进展[J]. 中国农机化学报, 2021, 42(3): 171-181. |
[6] | 王飞涛;樊春春;李兆东;张顺;夏萍;. 机器人在设施农业领域应用现状及发展趋势分析[J]. 中国农机化学报, 2020, 41(3): 93-98+120. |
[7] | 王晓阳;袁春元;吴鹤鹤;王传晓;. 附加气室容积可调式空气悬架分层控制研究[J]. 中国农机化学报, 2019, 40(8): 109-115. |
[8] | 胡卫;秦永法;曾励;张持;. 前驱式纯电动汽车制动能量回收控制策略研究[J]. 中国农机化学报, 2019, 40(8): 116-121. |
[9] | 夏光;郭东云;唐希雯;汪韶杰;孙保群;. 基于滑磨功的大功率拖拉机动力升挡控制研究[J]. 中国农机化学报, 2019, 40(1): 77-84. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2021《中国农机化学报 》编辑部
地址:南京市玄武区中山门外柳营100号 邮编: Tel: 025-84346270,84346296