中国农机化学报 ›› 2022, Vol. 43 ›› Issue (3): 159-169.DOI: 10.13733/j.jcam.issn.2095⁃5553.2022.03.022
姜赛珂1, 2,张美娜1, 3,李雪1, 3,祁雁楠1, 3,吕晓兰1, 2
出版日期:
2022-03-15
发布日期:
2022-04-11
Jiang Saike, Zhang Meina, Li Xue, Qi Yannan, Lü Xiaolan.
Online:
2022-03-15
Published:
2022-04-11
摘要: 设施内自主移动装备研发是设施农业智能化发展的关键,装备如何在设施内安全、快速、精准地移动是当前设施移动装备应用的难点。结合近些年国内外设施自主移动装备研究现状,首先对设施自主移动装备的应用进行介绍,然后根据导航模式的不同对其导航技术的研究进展进行重点阐述。总体来说,导轨式和循迹式路线固定、安装应用成本相对较高,作业范围小;基于SLAM(同步定位与建图)技术的多源数据融合式结构紧凑、自主规划路径、导航避障效率高,作业范围大。最后对我国设施自主移动机器人研发提出4点展望:机器人采用电力驱动;机器人设计小型化、模块化;重点研发设施SLAM技术;发展多功能通用移动平台,以期为我国设施自主移动机器人智能化发展提供参考。
中图分类号:
姜赛珂, 张美娜, 李雪, 祁雁楠, 吕晓兰, . 设施内自主移动装备导航控制技术研究进展[J]. 中国农机化学报, 2022, 43(3): 159-169.
Jiang Saike, Zhang Meina, Li Xue, Qi Yannan, Lü Xiaolan.. Development of navigation and control technology for autonomous mobile equipment in greenhouses[J]. Journal of Chinese Agricultural Mechanization, 2022, 43(3): 159-169.
[1] 齐飞, 魏晓明, 张跃峰. 中国设施园艺装备技术发展现状与未来研究方向[J]. 农业工程学报, 2017, 33(24): 1-9. Qi Fei, Wei Xiaoming, Zhang Yuefeng. Development status and future research emphase on greenhouse horticultural equipment and its relative technology in China [J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(24): 1-9. [2] 齐飞, 李恺, 李邵, 等. 世界设施园艺智能化装备发展对中国的启示研究[J]. 农业工程学报, 2019, 35(2): 183-195. Qi Fei, Li Kai, Li Shao, et al. Development of intelligent equipment for protected horticulture in world and enlightenment to China [J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(2): 183-195. [3] 束胜, 康云艳, 王玉, 等. 世界设施园艺发展概况、特点及趋势分析[J]. 中国蔬菜, 2018(7): 1-13. [4] 孙锦, 高洪波, 田婧, 等. 我国设施园艺发展现状与趋势[J]. 南京农业大学学报, 2019, 42(4): 594-604. Sun Jin, Gao Hongbo, Tian Jing, et al. Development status and trends of protected horticulture in China [J]. Journal of Nanjing Agricultural University, 2019, 42(4): 594-604. [5] 於锋, 马立新, 孙志远. 江苏省设施蔬菜机械化分析研究[J]. 中国农机化学报, 2016, 37(10): 86-90. Yu Feng, Ma Lixin, Sun Zhiyuan. Study on facility vegetable mechanization in Jiangsu Province [J]. Journal of Chinese Agricultural Mechanization, 2016, 37(10): 86-90. [6] 邓秀新, 项朝阳, 李崇光. 我国园艺产业可持续发展战略研究[J]. 中国工程科学, 2016, 18(1): 34-41. Deng Xiuxin, Xiang Zhaoyang, Li Chongguang. Study on sustainable development strategy of Chinese horticultural industry [J]. Strategic Study of CAE, 2016, 18(1): 34-41. [7] González R, Rodríguez F, Sánchez⁃Hermosilla J, et al. Navigation techniques for mobile robots in greenhouses[J]. Applied Engineering in Agriculture, 2009, 25(2): 153-165. [8] Henten E, Bac C W, Hemming J, et al. Robotics in protected cultivation [J]. IFAC Proceedings Volumes, 2013, 46(18): 170-177. [9] Mahmud M, Abidin M, Mohamed Z, et al. Multi⁃objective path planner for an agricultural mobile robot in a virtual greenhouse environment [J]. Computers and Electronics in Agriculture, 2019, 157: 488-499. [10] 丁小明. 温室甜椒采摘机器人[J]. 农业工程技术, 2019, 39(1): 80-84. [11] Liu T, Zhang B, Jia J. Electromagnetic navigation system design of the green house spraying robot [C]. 2011 Second International Conference on Mechanic Automation and Control Engineering. IEEE, 2011: 2140-2144. [12] 李祥付. 温室轨道式移动喷灌机研究及应用[D]. 郑州: 河南农业大学, 2008. Li Xiangfu. The research and application of self⁃propelled sprinkler in greenhouse [D]. Zhengzhou: Henan Agricultural University, 2008. [13] 张吉营. PG-250型双轨移动喷灌机的设计与安装调试[J]. 农业科技与装备, 2015(4): 75-76. Zhang Jiying. Design of type PG-250 two tracks move sprinkling machine and its installation and debugging [J]. Agricultural Science & Technology and Equipment, 2015(4): 75-76. [14] 张跃峰, 张日新. 双臂双轨全自动施肥喷灌机的特点[J]. 农业工程技术(温室园艺), 2013(3): 48. [15] Rafiq A, Kalantari D, Mashhadimeyghani H. Construction and development of an automatic sprayer for greenhouse [J]. Agricultural Engineering International: The CIGR e⁃Journal, 2014, 16(2): 36-40. [16] Nakao N, Suzuki H, Kitajima T, et al. Path planning and traveling control for pesticide⁃spraying robot in greenhouse [J]. Journal of Signal Processing, 2017, 21(4): 175-178. [17] 金彦, 胡威, 刘阳, 等. 基于单片机的循迹喷药小车设计[J]. 农业科技与装备, 2016(5): 25-26.. [18] 潘坚栋, 李伟, 张康成, 等. 大型温室地面移动式喷灌机导航控制系统设计[J]. 排灌机械工程学报, 2019, 37(2): 179-184. Pan Jiandong, Li Wei, Zhang Kangcheng, et al. Design of navigation control system for large⁃size greenhouse ground mobile irrigator [J]. Journal of Drainage and Irrigation Machinery Engineering, 2019, 37(2): 179-184. [19] 刘继展. 温室采摘机器人技术研究进展分析[J]. 农业机械学报, 2017, 48(12): 1-18. Liu Jizhan. Research progress analysis of robotic harvesting technologies in greenhouse [J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(12): 1-18. [20] 马方泰, 岳中芬. 温室采摘机器人技术研究[J]. 科学技术创新, 2019(36): 191-192. [21] Yamamoto S, Hayashi S, Saito S, et al. Development of robotic strawberry harvester to approach target fruit from hanging bench side [J]. Ifac Proceedings Volumes, 2010, 43(26): 95-100. [22] Hayashi S, Yamamoto S, Saito S, et al. Field operation of a movable strawberry⁃harvesting robot using a travel platform [J]. Japan Agricultural Research Quarterly, 2014, 48(3): 307-316. [23] Arad B, Balendonck J, Barth R, et al. Development of a sweet pepper harvesting robot [J]. Journal of Field Robotics, 2020, 37(6): 1027-1039. [24] Zhao Y, Gong L, Liu C, et al. Dual⁃armrobot design and testing for harvesting tomato in greenhouse [J]. IFAC⁃PapersOnLine, 2016, 49(16): 161-165. [25] Ling X, Zhao Y, Gong L, et al. Dual⁃arm cooperation and implementing for robotic harvesting tomato using binocular vision [J]. Robotics and Autonomous Systems, 2019, 114: 134-143. [26] Preter A D, Anthonis J, Baerdemaeker J D. Development of a robot for harvesting strawberries [J]. IFAC⁃PapersOnLine, 2018, 51(17): 14-19. [27] 郭威, 吴华瑞, 朱华吉. 设施温室影像采集与环境监测机器人系统设计及应用[J]. 智慧农业(中英文), 2020, 2(3): 48-60. Guo Wei, Wu Huarui, Zhu Huajie. Design and application of facility greenhouse image collecting and environmental data monitoring robot system [J]. Smart Agriculture, 2020, 2(3): 48-60. [28] 刘艳昌, 孙华, 吴纪红, 等. 基于机器人的温室大棚环境智能监控系统[J]. 江苏农业科学, 2017, 45(16): 214-218. [29] 皮杰, 柳军, 徐磊, 等. 一种适用于文洛式玻璃温室巡检机器人的悬挂式轨道[P]. 中国专利: CN209782076U, 2019-12-13. [30] 冯青春, 王秀. 温室智能装备系列之五十温室多功能轨道运载平台设计[J]. 农业工程技术(温室园艺), 2013(8): 62. [31] 张良贵, 瞿兆飞, 向贤平, 等. 一种温室轨道施药机器人[P]. 中国专利: CN205455556U, 2016-08-17. [32] 刘雪美, 李明, 李杨, 等. 一种温室用单轨植保机器人及其控制方法[P]. 中国专利: CN105360095A, 2016-03-02. [33] 崔泽, 韩汪洋, 钱东海, 等. 一种用于农业温室大棚的机器人自动转轨系统[P]. 中国专利: CN106171651A, 2016-12-07. [34] Chiu Y C, Chen S, Lin J F. Study of an autonomous fruit picking robot system in greenhouses [J]. Engineering in Agriculture, Environment and Food, 2013, 6(3): 92-98. [35] 姜瀚崴, 慕瑞嘉. 用于温室大棚的多功能空中智能机器人、系统及工作方法[P]. 中国专利: CN111096178A, 2020-05-05. [36] Van Henten E J, Van’t Slot D A, Hol C W J, et al. Optimal manipulator design for a cucumber harvesting robot [J]. Computers and Electronics in Agriculture, 2009, 65(2): 247-257. [37] Bac C W, Roorda T, Reshef R, et al. Analysis of a motion planning problem for sweet⁃pepper harvesting in a dense obstacle environment [J]. Biosystems Engineering, 2016, 146: 85-97. [38] 郑刚, 刘佳, 李旭. 现代温室采摘机器人发展概况[J]. 农业工程技术, 2019, 39(31): 35-40. [39] 靳伟. 温室轨道式多行作业喷雾机设计与试验研究[D]. 镇江: 江苏大学, 2019. Jin Wei. Design and experimental research of rail multi⁃row sprayer in greenhouse [D]. Zhenjiang: Jiangsu University, 2019. [40] Balaso S D, Arima S, Ueka Y, et al. Development of a multi⁃operation system for intelligent greenhouses [J]. IFAC Proceedings Volumes, 2013, 46(4): 287-292. [41] 赵亚聪, 张国栋, 蔡峰. 温室悬挂喷灌机特点和选用分析[J]. 农业工程技术, 2019, 39(7): 15-18. [42] 王晔. 温室智能微喷机双向移动底盘系统研制[D]. 长春: 吉林农业大学, 2018. Wang Ye. The study of development of two⁃way mobile chassis system for smart greenhouse miscro⁃injector [D]. Changchun: Jilin Agricultural University, 2018. [43] 潘孝勇. 多功能自动化肥水一体成套机具的研制与应用[D]. 杭州: 杭州电子科技大学, 2019. Pan Xiaoyong. Development and application of multifunctional automation fertilizer integrated machine tool [D]. Hangzhou: Hangzhou Dianzi University, 2019. [44] Lin J, Ma J, Liu K, et al. Development and test of an autonomous air⁃assisted sprayer based on single hanging track for solar greenhouse [J]. Crop Protection, 2021, 142: 105502. [45] 刘娜, 王彦, 张丽, 等. 日光温室专用移动喷灌机的研制[J]. 中国农机化学报, 2015, 36(1): 116-118. Liu Na, Wang Yan, Zhang Li, et al. Research and development of mobile sprinkling irrigation machine for dedicated sunlight greenhouse [J]. Journal of Chinese Agricultural Mechanization, 2015, 36(1): 116-118. [46] 高星星, 高一川, 肖进, 等. 一种温室内单轨自走式喷灌机的设计研究[J]. 农业工程技术(温室园艺), 2015(13): 38-40, 42. [47] 高星星, 张俊峰, 曾凡琮, 等. 温室移动喷灌机关键部位研究进展[J]. 安徽农业科学, 2014, 42(15): 4934-4937. [48] Lucas G H. Programmable sprinkler system [P]. United States Patent: US4723714, 1988-09-09. [49] 张晓文, 卜云龙. 温室用智能移动喷灌机的设计与推广[J]. 农业技术与装备, 2007(2): 4, 6. [50] 张二鹏, 马锃宏, 耿长兴, 等. 温室悬挂喷施机跨垄作业控制系统设计[J]. 中国农业大学学报, 2013, 18(6): 170-174. Zhang Erpeng, Ma Zenghong, Geng Changxing, et al. Control system for automatic track transferring of greenhouse hanging sprayer [J]. Journal of China Agricultural University, 2013, 18(6): 170-174. [51] 刘涛, 张宾, 郑承云. 温室机器人导航系统设计与性能测试[J]. 内蒙古农业大学学报(自然科学版), 2013, 34(2): 108-111. Liu Tao, Zhang Bin, Zheng Chengyun. Navigation system design and performance testing of the greenhouse robot [J]. Journal of Inner Mongolia University (Natural Science Edition), 2013, 34(2): 108-111. [52] 许童羽, 冯帅, 陈春玲, 等. 日光温室自主寻迹喷药车设计方法研究[J]. 沈阳农业大学学报, 2018, 49(4): 440-446. [53] 杨振宇, 刘发英, 王勇. 自导航温室黄瓜收获机器人的研究[J]. 中国农机化学报, 2013, 34(6): 225-229. Yang Zhenyu, Liu Faying, Wang Yong. Study of automatic navigation cucumber harvesting robot in greenhouse [J]. Journal of Chinese Agricultural Mechanization, 2013, 34(6): 225-229. [54] 王鹏, 耿长兴, 王蓬勃. 设施农业喷雾机器人的组合视觉导航方法[J]. 江苏大学学报(自然科学版), 2019, 40(3): 307-312. Wang Peng, Geng Changxing, Wang Pengbo. Visual navigation method of agro⁃spraying robot based on navigation line and QR code combination [J]. Journal of Jiangsu University (Natural Science Edition), 2019, 40(3): 307-312. [55] 王红君, 陈慧, 岳有军, 等. 基于多颜色空间分割的温室环境视觉导航路径信息提取[J]. 江苏农业科学, 2017, 45(16): 202-206. [56] Nissimov S, Goldberger J, Alchanatis V. Obstacle detection in a greenhouse environment using the Kinect sensor [J]. Computers and Electronics in Agriculture, 2015, 113: 104-115. [57] 白如月, 汪小旵, 鲁伟, 等. 施药机器人对行施药系统的设计与试验[J]. 华南农业大学学报, 2018, 39(5): 101-109. Bai Ruyue, Wang Xiaochan, Lu Wei, et al. Design and experiment of row⁃following pesticide spraying system by robot [J]. Journal of South China Agricultural University, 2018, 39(5): 101-109. [58] 任永新, 谭豫之, 杨会华, 等. 基于模糊控制的黄瓜采摘机器人视觉导航[J]. 江苏大学学报(自然科学版), 2009, 30(4): 343-346. Ren Yongxin, Tan Yuzhi, Yang Huihua, et al. Visual navigation of cucumber picking robot based on fuzzy control [J]. Journal of Jiangsu University (Natural Science Edition), 2009, 30(4): 343-346. [59] 张群, 宋健, 曹高华, 等. 视觉导航温室机器人路径识别算法与实验[J]. 实验室研究与探索, 2018, 37(5): 14-16, 41. [60] Chen J, Qiang H, Wu J, et al. Extracting the navigation path of a tomato⁃cucumber greenhouse robot based on a median point Hough transform [J]. Computers and Electronics in Agriculture, 2020, 174: 105472. [61] Chen J, Qiang H, Wu J, et al. Navigation path extraction for greenhouse cucumber⁃picking robots using the prediction⁃point Hough transform [J]. Computers and Electronics in Agriculture, 2021, 180: 105911. [62] 贾士伟, 李军民, 邱权, 等. 基于激光测距仪的温室机器人道路边缘检测与路径导航[J]. 农业工程学报, 2015, 31(13): 39-45. Jia Shiwei, Li Junmin, Qiu Quan, et al. New corridor edge detection and navigation for greenhouse mobile robots based on laser scanner [J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(13): 39-45. [63] Widodo S, Shiigi T, Than N M, et al. Sound⁃based ranging system in greenhouse environment with multipath effect compensation using artificial neural network [C]. International Conference on Neural Information Processing. Springer, Berlin, Heidelberg, 2012: 156-163. [64] Widodo S, Shiigi T, Than N M, et al. Design of self⁃calibration method for sound⁃based positioning system in greenhouse [J]. IFAC Proceedings Volumes, 2013, 46(4): 332-335. [65] Shiigi T, Kondo N, Ogawa Y, et al. Temperature compensation method using base⁃station for spread spectrum sound⁃based positioning system in green house [J]. Engineering in Agriculture, Environment and Food, 2017, 10(3): 233-242. [66] Tsay L W J, Shiigi T, Huang Z, et al. Temperature⁃compensated spread spectrum sound⁃based local positioning system for greenhouse operations [J]. IoT, 2020, 1(2): 147-160. [67] Xu L, Feng C, Kamat V R, et al. An occupancy grid mapping enhanced visual SLAM for real⁃time locating applications in indoor GPS⁃denied environments [J]. Automation in Construction, 2019, 104: 230-245. [68] 林相泽, 王祥, 林彩鑫, 等. 基于超宽带的温室农用车辆定位信息采集与优化[J]. 农业机械学报, 2018, 49(10): 23-29, 45. Lin Xiangze, Wang Xiang, Lin Caixin, et al. Location information collection and optimization for agricultural vehicle based on UWB [J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(10): 23-29, 45. [69] 王勇, 张新景, 史颖刚. UWB/陀螺仪组合的温室喷药机器人导航系统设计[J]. 信息技术与信息化, 2019(6): 60-62. Wang Yong, Zhang Xinjing, Shi Yinggang. Design of navigation system of UWB/gyroscope combined greenhouse pesticide spraying robot [J]. Information Technology and Informatization, 2019(6): 60-62. [70] 姚立健, Santosh K Pitla, 杨自栋, 等. 基于超宽带无线定位的农业设施内移动平台路径跟踪研究[J]. 农业工程学报, 2019, 35(2): 17-24. Yao Lijian, Santosh K Pitla, Yang Zidong, et al. Path tracking of mobile platform in agricultural facilities based on ultra wideband wireless positioning [J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(2): 17-24. [71] 赵辰彦, 姚立健, 杨自栋, 等. 基于无线定位的温室生产平台自动导航[J]. 浙江农林大学学报, 2020, 37(3): 578-586. Zhao Chenyan, Yao Lijian, Yang Zidong, et al. Automatic navigation of production platform in greenhouse based on wireless positioning [J]. Journal of Zhejiang A & F University, 2020, 37(3): 578-586. [72] 毛新涛, 鞠兴全, 刘芯彤. 基于激光SLAM的AGV发展前景[J]. 自动化博览, 2020(10): 96-101. [73] 田野, 陈宏巍, 王法胜, 等. 室内移动机器人的SLAM算法综述[J]. 计算机科学, 2021, 48(9): 223-234. Tian Ye, Chen Hongwei, Wang Fasheng, et al. Overview of SLAM algorithms for mobile robots [J]. Computer Science, 2021, 48(9): 223-234. [74] 危双丰, 庞帆, 刘振彬, 等. 基于激光雷达的同时定位与地图构建方法综述[J]. 计算机应用研究, 2020, 37(2): 327-332. Wei Shuangfeng, Pang Fan, Liu Zhenbin, et al. Survey of lidar based SLAM algorithm [J]. Application Research of Computers, 2020, 37(2): 327-332. [75] 杨观赐, 王霄远, 蒋亚汶, 等. 视觉与惯性传感器融合的SLAM技术综述[J]. 贵州大学学报(自然科学版), 2020, 37(6): 1-12. Yang Guanci, Wang Xiaoyuan, Jiang Yawen, et al. Review of SLAM technologies based on visual and inertial sensor fusion [J]. Journal of Guizhou University (Natural Sciences Edition), 2020, 37(6): 1-12. [76] 张亮, 刘智宇, 曹晶瑛, 等. 扫地机器人增强位姿融合的Cartographer算法及系统实现[J]. 软件学报, 2020, 31(9): 2678-2690. Zhang Liang, Liu Zhiyu, Cao Jingying, et al. Cartographer algorithm and system implementation based on enhanced pose fusion of sweeping robot [J]. Journal of Software, 2020, 31(9): 2678-2690. [77] 陈蕾, 徐重酉, 高文婷, 等. 基于激光SLAM技术的电缆沟道无人机巡检避障技术研究[J]. 高压电器, 2018, 54(9): 209-213, 220. Chen Lei, Xu Chongyou, Gao Wenting, et al. Laser SLAM based obstacle avoidance technology of UAV for cable trench inspection [J]. High Voltage Apparatus, 2018, 54(9): 209-213, 220. [78] 权美香, 朴松昊, 李国. 视觉SLAM综述[J]. 智能系统学报, 2016, 11(6): 768-776. [79] 邸凯昌, 万文辉, 赵红颖, 等. 视觉SLAM技术的进展与应用[J]. 测绘学报, 2018, 47(6): 770-779. [80] 王锦凯, 贾旭. 视觉与激光融合SLAM研究综述[J]. 辽宁工业大学学报(自然科学版), 2020, 40(6): 356-361. Wang Jinkai, Jia Xu. Survey of SLAM with camera⁃laser fusion sensor [J]. Journal of Liaoning University of Technology (Natural Science Edition), 2020, 40(6): 356-361. [81] 胡焉为, 苗玉彬. 基于信标识别的温室AGV视觉SLAM定位算法[J]. 机电一体化, 2018, 24(10): 9-15. [82] 马争光, 赵永国, 刘成业, 等. 激光和视觉融合SLAM方法研究综述[J]. 计算机测量与控制, 2019, 27(3): 1-6. Ma Zhengguang, Zhao Yongguo, Liu Chengye, et al. Survey of SLAM with laser⁃camera fusion sensor [J]. Computer Measurement & Control, 2019, 27(3): 1-6. [83] 代凯, 申棋仁, 吴官朴, 等. 基于激光雷达的SLAM和融合定位方法综述[J]. 汽车文摘, 2021(2): 1-8. Dai Kai, Shen Qiren, Wu Guanpu, et al. A review of LiDAR based SLAM and multi⁃sensor fusion for localization [J]. Automotive Digest, 2021(2): 1-8. [84] Kohlbrecher S, Von Stryk O, Meyer J, et al. A flexible and scalable SLAM system with full 3D motion estimation [C]. 2011 IEEE international symposium on safety, security, and rescue robotics. IEEE, 2011: 155-160. [85] 侯加林, 蒲文洋, 李天华, 等. 双激光雷达温室运输机器人导航系统研制[J]. 农业工程学报, 2020, 36(14): 80-88. Hou Jialin, Pu Wenyang, Li Tianhua, et al. Development of dual⁃lidar navigation system for greenhouse transportation robot [J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(14): 80-88. [86] 欧阳仕晗, 刘振宇, 赵怡巍, 等. 移动机器人三维激光SLAM算法研究[J]. 微处理机, 2020, 41(5): 58-64. Ouyang Shihan, Liu Zhenyu, Zhao Yiwei, et al. Research on 3D laser algorithm of mobile robot [J]. Microprocessors, 2020, 41(5): 58-64. |
[1] | 邢钦淞, 丁素明, 薛新宇, 崔龙飞, 乐飞翔, 李鹰航. 智能田间除草机器人发展现状研究[J]. 中国农机化学报, 2022, 43(8): 173-181. |
[2] | 耿丽杰, 顾健, 别晓婷, 冉维旭, 兰玉彬, . 基于Scan Context与NDT-ICP相融合的果园建图方法研究[J]. 中国农机化学报, 2022, 43(7): 44-50. |
[3] | 李雪峰, 李涛, 邱权, 樊正强, 孙娜. 果园移动机器人自主导航研究进展[J]. 中国农机化学报, 2022, 43(5): 156-164. |
[4] | 洪苗, 柳平增, 张艳, 马学文, 郑勇, 柳建增. 基于主要环境因子的设施黄瓜生长模型研究[J]. 中国农机化学报, 2022, 43(4): 32-37. |
[5] | 刁智华, 闫娇楠, 张萌, 贺振东, 娄泰山, 吴青娥. 基于WiFi通信的玉米除草机器人结构设计与试验[J]. 中国农机化学报, 2022, 43(4): 131-137. |
[6] | 吕恩利, 苏秋双, 王飞仁, 罗毅智, 曾伯阳, 曾志雄. 基于AprilTag的畜牧自主移动机器人建图与定位[J]. 中国农机化学报, 2022, 43(4): 138-145. |
[7] | 黄林林, 李世雄, 谭彧, 王硕. 基于改进卷积神经网络算法的路径导航研究[J]. 中国农机化学报, 2022, 43(4): 146-152. |
[8] | 代玉梅, 张瑞玲, 马黎. 改进A*算法的采摘机器人路径规划与跟踪控制[J]. 中国农机化学报, 2022, 43(3): 138-145. |
[9] | 李岩舟, 石奕峰, 涂伟, 覃锋, 潘柳颖, 何艳洲. 基于激光雷达的全生长周期甘蔗地行间自主导航研究[J]. 中国农机化学报, 2022, 43(3): 153-158. |
[10] | 贾桃, 谭蓉, 赵倩, 王利春, 郭文忠. 我国设施生菜无土生产装备研究现状及展望[J]. 中国农机化学报, 2022, 43(2): 67-74. |
[11] | 刘思幸, 柴岩, 柳天虹, 李爽, 缪宏, 韩非. 基于卡尔曼滤波PID控制的精量排种器优化设计与试验[J]. 中国农机化学报, 2022, 43(11): 1-8. |
[12] | 王潇, 张美娜, Zhou Jianfeng, 孙传亮, 吴茜, 曹静. LiDAR传感器及技术在农业场景的应用进展综述[J]. 中国农机化学报, 2022, 43(11): 155-164. |
[13] | 王新彦, 张凯, 盛冠杰, 易政洋. 基于单线激光雷达的割草机器人建图方法研究[J]. 中国农机化学报, 2022, 43(10): 51-56. |
[14] | 张义胜, 侯心爱, 宫玉敏, 孙建新, 蒋鑫. 3WP-200A型智能植保机器人喷枪设计与试验[J]. 中国农机化学报, 2022, 43(10): 65-71. |
[15] | 陈蕾, 聂莹, 赵继春, . 我国设施种植业从机械化到智能化的发展及思考#br#[J]. 中国农机化学报, 2022, 43(10): 78-85. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||
版权所有 © 2021《中国农机化学报 》编辑部
地址:南京市玄武区中山门外柳营100号 邮编: Tel: 025-84346270,84346296