[1] 王瑾,王瑞荣,李晓红.番茄采摘机器人目标识别方法研究[J]. 江苏农业科学,2021,49(20):217-222.
Wang Jin, Wang Ruirong, Li Xiaohong. Research on target recognition method of tomato picking robot [J]. Jiangsu Agricultural Sciences, 2021,49(20):217-222.
[2] 陈飞,葛云,张立新,等.红花采摘机器人集条预定位机构设计与试验[J].农业工程学报,2021,37(15):10-19.
Chen Fei, Ge Yun, Zhang Lixin, et al. Design and experiment of the stripcollected prepositioning mechanism for safflower picking robots [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021,37(15):10-19.
[3] 张继成,李德顺.基于深度残差学习的成熟草莓识别方法[J].中国农机化学报,2022,43(2):136-142.
Zhang Jicheng, Li Deshun. Ripe strawberry recognition method based on deep residual learning [J]. Journal of Chinese Agricultural Mechanization,2022, 43(2):136-142.
[4] 高梦圆,马双宝,董玉婕,等.基于实例分割苹果采摘机器人视觉定位与检测[J].江苏农业科学,2022,50(3):201-208.
Gao Mengyuan, Ma Shuangbao, Dong Yujie, et al. Visual localization and detection of apple picking robot based on case segmentation [J]. Jiangsu Agricultural Sciences,2022,50(3):201-208.
[5] 于丰华,周传琦,杨鑫.日光温室番茄采摘机器人设计与试验[J].农业机械学报,2022,53(1):41-49.
Yu Fenghua, Zhou Chuanqi, Yang Xin, et al. Design and experiment of tomato picking robot in solar greenhouse [J].Transactions of Chinese Society for Agricultural Machinery, 2022,53(1):41-49.
[6] 张勤,陈建敏,李彬,等.基于RGB-D信息融合和目标检测的番茄串采摘点识别定位方法[J].农业工程学报,2021,37(18):143-152.
Zhang Qin, Chen Jianmin, Li Bin, et al. Method for recognizing and locating tomato cluster picking points based on RGB-D information fusion and target detection [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021,37(18):143-152.
[7] 郑嫦娥,高坡,Gan Hao,等.基于分步迁移策略的苹果采摘机械臂轨迹规划方法[J].农业机械学报,2020,51(12):15-23.
Zheng Change, Gao Po,Gan Hao, et al. Trajectory planning method for apple picking manipulator based on stepwise migration strategy [J]. Transactions of Chinese Society for Agricultural Machinery.2020,51(12):15-23.
[8] 麦春艳,郑立华,肖昌一,等.自然光照条件下苹果识别方法对比研究[J].中国农业大学学报,2016,21(11):43-50.
Mai Chunyan, Zheng Lihua, Xiao Changyi, et al. Comparison of apple recognition methods under natural light [J]. Journal of China Agricultural University, 2016,21(11):43-50.
[9] 钱建平,杨信廷,吴晓明,等.自然场景下基于混合颜色空间的成熟期苹果识别方法[J].农业工程学报,2012,28(17):137-142.
Qian Jianping, Yang Xinting, Wu Xiaoming, et al. Mature apple recognition based on hybrid color space in natural scene [J]. Transactions of the Chinese Society of Agricultural Engineering, 2012,28(17):137-142.
[10] 司永胜,乔军,刘刚,等.基于机器视觉的苹果识别和形状特征提取[J].农业机械学报,2009,40(8):161-165,73.
Si Yongsheng, Qiao Jun, Liu Gang, et al. Recognition and shape features extraction of apples based on machine vision [J]. Transactions of Chinese Society for Agricultural Machinery,2009,40(8):161-165,73.
[11] 赵辉,乔艳军,王红君,等.基于改进YOLOv3的果园复杂环境下苹果果实识别[J].农业工程学报,2021,37(16):127-135.
Zhao Hui, Qiao Yanjun, Wang Hongjun, et al. Apple fruit recognition in complex orchard environment based on improved YOLOv3 [J]. Transactions of the Chinese Society of Agricultural Engineering, 2021,37(16):127-135.
[12] 张伟,周梦源,夏坚.基于改进HOG特征提取与SVM分类器的建筑裂缝识别方法[J].南昌工程学院学报,2022,41(1):47-51.
Zhang Wei, Zhou Mengyuan, Xia Jian. Building crack recognition method based on improved HOG feature extraction with SVM classifier [J]. Journal of Nanchang Institute of Technology, 2022,41(1):47-51.
[13] 刘庆华,李智.一种基于HOG与LBP双特征融合模型的人脸年龄估计方法[J].江苏科技大学学报(自然科学版),2021,35(3):50-55.
Liu Qinghua, Li Zhi. Faceage estimation method based on HOG and LBP dual feature fusion model [J]. Journal of Jiangsu University of Science and Technology, 2021,35(3):50-55.
[14] 刘栩廷,刘姣娣,王明明,等.基于SVM的蔗种坏芽检测识别[J].石河子大学学报(自然科学版),2022(4):481-486.
Liu Xuting, Liu Jiaodi, Wang Mingming, et al. Detection and recognition of sugarcanebad bud based on SVM [J].Journal of Shihezi University (Natural Science Edition),2022(4):481-486.
[15] 张燕,田国英,杨英茹,等.基于SVM的设施番茄早疫病在线识别方法研究[J].农业机械学报,2021,52(S1):125-133,206.
Zhang Yan, Tian Guoying, Yang Yingru, et al. Online detection method of tomato early blight disease based on SVM [J]. Transactions of Chinese Society for Agricultural Machinery,2021,52(S1):125-133,206.
[16] 杨光,张洪熙,方涛,等.基于改进AdaBoost算法的秸秆识别与覆盖率检测技术[J].农业机械学报,2021,52(7):177-183.
Yang Guang, Zhang Hongxi, Fang Tao, et al. Straw recognition and coverage rate detection technology based on improved AdaBoost algorithm [J]. Transactions of Chinese Society for Agricultural Machinery,2021,52(7):177-183.
|