[1]
黄会男, 王德福, 李百秋, 等. 保育猪饲喂器设计与排料性能试验[J]. 农业机械学报, 2018, 49(10): 154-162.
Huang Huinan, Wang Defu, Li Baiqiu, et al. Design and experiment of discharging performance of feeder for nursery [J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(10): 154-162.
[2]
Magowan E, Mccann M E E, OConnell N E. The effect of feeder type and change of feeder type on growing and finishing pig performance and behaviour [J]. Animal Feed Science & Technology, 2008, 142(1-2): 133-143.
[3]
曹建国, 沈晓林, 许栋, 等. 保育仔猪智能化饲喂器的饲喂效果观察[J]. 上海畜牧兽医通讯, 2016, 19(3): 26-27.
[4]
何劲, 李强, 陈映, 等. 智能化液态料饲喂系统对保育猪饲养效果的影响研究[J]. 四川畜牧兽医, 2019, 46(4): 31-32, 35.
He Jin, Li Qiang, Chen Ying, et al. The feeding effect of intelligent liquid feeding system on weaned piglets [J]. Sichuan Animal & Veterinary Sciences, 2019, 46(4): 31-32, 35.
[5]
Almeida L M D, Zavelinski V, Sonálio K C, et al. Effect of feed particle size in pelleted diets on growth performance and digestibility of weaning piglets [J]. Livestock Science, 2020: 104364.
[6]
Maselyne J, Saeys W, Briene P, et al. Methods to construct feeding visits from RFID registrations of growingfinishing pigs at the feed trough [J]. Computers and Electronics in Agriculture, 2016, 128: 9-19.
[7]
Fernández A P, Norton T, Youssef A, et al. Realtime modelling of individual weight response to feed supply for fattening pigs [J]. Computers and Electronics in Agriculture, 2019, 162: 895-906.
[8]
Wright C, Hanne. Scales of renewability exemplified by a case study of three Danish pig production systems [J]. Ecological Modelling, 2015, 315: 28-36.
[9]
陈安国. 猪用干湿饲喂器的设计原理及应用技术参数研究[D]. 杭州: 浙江大学, 2005.
Chen Anguo. Studies on design theory and application technology of wet/dry feeders for swine [D]. Hangzhou: Zhejiang University, 2005.
[10]
黄会男. 猪用饲喂器精确供料装置排料机理分析与试验研究[D]. 哈尔滨: 东北农业大学, 2020.
Huang Huinan. Discharging mechanism analysis and experimental research of accurate feeding device for swine feeder [D]. Harbin: Northeast Agricultural University, 2020.
[11]
乔爱民, 何博侠, 王艳春. 猪用智能粥料器控制系统研究[J]. 农业机械学报, 2016, 47(7): 166-175.
Qiao Aimin, He Boxia, Wang Yanchun. Control system of smart pig porridge feeder [J]. Transactions of the Chinese Society for Agricultural Machinery, 2016, 47(7): 166-175.
[12]
张伏, 王亚飞, 吕美, 等. 仔猪自动精细饲喂系统设计与试验[J]. 农业机械学报, 2018, 49(7): 39-45.
Zhang Fu, Wang Yafei, Lü Mei, et al. Design and experiment of autoprecision feeding system for piglets [J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(7): 39-45.
[13]
Meara F, Gardiner G E, Clarke D, et al. Microbiological assessment of liquid feed for finisher pigs on commercial pig units [J]. Journal of Applied Microbiology, 2021, 130(2): 356-369.
[14]
Chavan S, Gaikwad A. Optimization of enzymatic hydrolysis of bamboo biomass for enhanced saccharification of cellulose through Taguchi orthogonal design [J]. Journal of Environmental Chemical Engineering, 2020, 9(1): 104807.
[15]
邓凯熠, 刘仁鑫, 张凯, 等. 液态饲料智能饲喂系统设计与验证[J]. 黑龙江畜牧兽医, 2020, 36(16): 50-53.
[16]
刘金浩, 林都, 鲜浩, 等. 基于ARM一体机的改进生猪智能饲喂系统设计[J]. 中国农机化学报, 2016, 37(2): 97-100.
Liu Jinhao, Lin Du, Xian Hao, et al. Improved design of intelligent pigfeeding system based on ARM [J]. Journal of Chinese Agricultural Mechanization, 2016, 37(2): 97-100.
[17]
陈广富, 徐余伟. 饲料螺旋输送机设计参数的选择和确定[J]. 饲料工业, 2008, 40(15): 1-5.
[18]
李佳奇. 猪用饲喂器螺旋式供料装置的设计与试验研究[D]. 哈尔滨: 东北农业大学, 2020.
Li Jiaqi. Design and experimental study of screw feeding device for sow feeder [D]. Harbin: Northeast Agricultural University, 2020.
[19]
刘克瑾, 肖昭然, 王世豪. 基于离散元模拟筒仓贮料卸料成拱过程及筒仓壁压力分布[J]. 农业工程学报, 2018, 34(20): 277-285.
Liu Kejin, Xiao Zhaoran, Wang Shihao. Development of arching and silo wall pressure distribution in storage and discharging state based on discrete element analysis [J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(20): 277-285.
[20]
李萌. 基于粮食摩擦力效应的筒仓卸粮成拱机理研究[D]. 郑州: 河南工业大学, 2019.
Li Meng. Research on arching mechanism of silo unloading grain based on grain friction effect [D]. Zhengzhou: Henan University of Technology, 2019.
[21]
王颉. 试验设计与SPSS应用[M]. 北京: 化学工业出版社, 2006.
|