[1] 毕晓菲, 胡发广, 陈雷, 等. 中国云南与巴西咖啡初级加工现状比较及存在问题探讨[J]. 农产品加工(学刊), 2014(6): 68-70. [2] 蒋快乐, 陈治华, 强磊, 等. 6PL-4000自动耙料设备在咖啡加工中的应用研究[J]. 中国热带农业, 2019(4): 35-39. Jiang Kuaile, Chen Zhihua, Qiang Lei, et al. Research and application of 6PL-4000 automatic rake equipment in coffee processing [J]. China Tropical Agriculture, 2019(4): 35-39. [3] 郭容琦, 罗心平, 李国鹏, 等. 云南小粒咖啡产业发展现状分析[J]. 广东农业科学, 2009(3): 211-214. [4] 胡发广, 毕晓菲, 黄家雄, 等. 小粒咖啡初加工方法概述[J]. 农产品加工, 2017(6): 66-68, 70. [5] 罗映山, 黄家雄, 陈德新, 等. 精品咖啡及其生产技术初探[A]. 中国科学技术协会, 云南省人民政府. 第十六届中国科协年会——分17精品咖啡豆认证与公平交易及庄园标准化国际论坛论文集[C]. 中国科学技术协会, 云南省人民政府: 中国科学技术协会学会学术部, 2014: 6. [6] 肖兵, 匡钰, 李维锐. 云南小粒种咖啡初加工工艺技术改进与创新[J]. 中国热带农业, 2018(6): 14-16, 19. [7] 鲍晓华, 成文章, 董维多, 等. 咖啡豆的黄蜜处理方法[P]. 中国专利: CN201610940670.0, 2016-10-25. [8] 鲍晓华, 董维多, 成文章, 等. 咖啡豆的红蜜处理方法[P]. 中国专利: CN201610940429.8, 2016-10-25. [9] Tarzia A, Scholz M, Petkowicz C. Influence of the postharvest processing method on polysaccharides and coffee beverages [J]. International Journal of Food Science & Technology, 2010, 45(10): 2167-2175. [10] 陈云兰, 陈治华, 蒋快乐, 等. 不同初加工工艺对云南阿拉比卡咖啡品质的影响[J]. 现代食品科技, 2019, 35(2): 155-162, 198. [11] 徐侃, 郭芬, 吴坚, 等. 咖啡湿法加工过程中影响品质的因素[J]. 中国农业信息, 2014(3): 153-154. [12] 黄家雄, 吕玉兰, 周志伟, 等. 咖啡酶促脱胶技术试验初报[J]. 中国热带农业, 2016(5): 62-65. [13] 文志华, 毕晓菲. 试论咖啡鲜果的加工方法[J]. 食品安全导刊, 2017(30): 117. [14] 武瑞瑞, 李贵平, 王雪松, 等. 咖啡湿法加工过程中影响品质的因素分析[J]. 热带农业工程, 2012, 36(5): 1-3. [15] 李晓娇, 杨鸾芳. 小粒咖啡脱胶技术研究进展[J]. 中国农业信息, 2014(11): 104. [16] 匡钰, 肖兵, 张洪波, 等. 云南咖啡初加工废弃物利用及排放情况调查[J]. 中国热带农业, 2018(5): 31-36. [17] Cantarel B L, Coutinho P M, Corinne R, et al. The Carbohydrate-Active EnZymes database (CAZy): An expert resource for Glycogenomics [J]. Nucleic acids research, 2008, 37: 233-238. [18] Kashyap D R, Vohra P K, Chopra S, et al. Applications of pectinases in the commercial sector: A review [J]. Bioresource Technology, 2001, 77(3): 215-227. [19] Pedrolli D B, Monteiro A C, Gomes E, et al. Pectin and pectinases: Production, characterization and industrial application of microbial pectinolytic enzymes [J]. Open Biotechnology Journal, 2009, 3(1): 9-18. [20] 黄家雄, 吕玉兰, 周志伟, 等. 咖啡酶促脱胶技术试验初报[J]. 中国热带农业, 2016(5): 62-65. [21] 程金焕, 何红艳, 李慧敏, 等. 酶促发酵在咖啡初加工过程中的应用研究[J]. 安徽农业科学, 2016, 44(6): 83-84, 90. Cheng Jinhuan, He Hongyan, Li Huimin, et al. Application of enzymosis on the pretreating process of coffee [J]. Journal of Anhui Agricultural Sciences, 2016, 44(6): 83-84, 90. [22] 陈云兰, 李学玲, 蒋快乐, 等. 咖啡湿法发酵中使用果胶酶对脱胶时间与杯品质量的影响[J]. 热带作物学报, 2020, 41(2): 371-377. Chen Yunlan, Li Xueling, Jiang Kuaile, et al. Effects of pectinase on pectin removing time and cup quality in wet fermentation of coffee [J]. Chinese Journal of Tropical Crops, 2020, 41(2): 371-377. [23] 陈云兰, 莫丽珍, 陈小龙, 等. 咖啡湿法加工中生物酶制剂脱胶污水指标测定[J]. 热带农业科学, 2019, 39(5): 81-84, 98. [24] Haile M, Kang W H. The role of microbes in coffee fermentation and their impact on coffee quality [J]. Journal of Food Quality, 2019(12). [25] Silva C F, Schwan R F, Dias Ë S, et al. Microbial diversity during maturation and natural processing of coffee cherries of Coffea arabica in Brazil [J]. International Journal of Food Microbiology, 2000, 60(2-3): 251-260. [26] Pereira G V D M, Soccol V T, Pandey A, et al. Isolation, selection and evaluation of yeasts for use in fermentation of coffee beans by the wet process [J]. International Journal of Food Microbiology, 2014, 188(10): 60-66. [27] Silva C F, Vilela D M, Cordeiro C S, et al. Evaluation of a potential starter culture for enhance quality of coffee fermentation [J]. World Journal of Microbiology and Biotechnology (Formerly MIRCEN Journal of Applied Microbiology and Biotechnology), 2013, 29(2): 235-247. [28] Neto D P D C, Pereira G V D M, Finco A M O, et al. Microbiological, physicochemical and sensory studies of coffee beans fermentation conducted in a yeast bioreactor model [J]. Food Biotechnology, 2020, 34(2): 172-192. [29] Tri Panji, Priyono, Suharyanto, et al. “CIRAGI”-The microbial fermentation starter for developing excellent coffee flavor [J]. IOP Conference Series Earth and Environmental Science, 2018, 183. [30] 李金平, 轩坤阳, 龚纾源, 等. 太阳能控温的干湿厌氧发酵对比试验研究[J]. 中国农机化学报, 2020, 41(11): 124-130. Li Jinping, Xuan Kunyang, Gong Shuyuan, et al. Contrast experimental study on dry and wet anaerobic fermentation controlled by solar energy [J]. Journal of Chinese Agricultural Mechanization, 2020, 41(11): 124-130. [31] Haile M, Bae H M, Kang W H. Comparison of the antioxidant activities and volatile compounds of coffee beans obtained using digestive bio-processing (Elephant Dung Coffee) and commonly known processing methods [J]. Antioxidants, 2020, 9(5). [32] 佟世生, 王丽, 靳静言, 等. 酶解偶联发酵体外模拟麝香猫咖啡的电子舌相关性分析[J]. 食品工业科技, 2015, 36(22): 133-136, 142. [33] 弘子姗, 谭超, 杨宁. 体外模拟发酵对咖啡理化性质及品质的影响[J]. 食品与发酵工业, 2021, 47(4): 54-59. Hong Zishan, Tan Chao, Yang Ning. Effects of in vitro digestion on the physicochemical property and quality of Arabica coffee [J]. Food and Fermentation Industries, 2021, 47(4): 54-59. [34] 王龙, 胡灿, 李传峰, 等. 红枣热风干燥过程及收缩特性的试验研究[J]. 中国农机化学报, 2020, 41(1): 79-82. Wang Long, Hu Can, Li Chuanfeng, et al. Experimental study on the drying process and shrinkage characteristics of jujube [J]. Journal of Chinese Agricultural Mechanization, 2020, 41(1): 79-82. [35] 李国鹏, 谢焕雄, 王嘉麟, 等. 鸡腿菇热风干燥特性及数学模型研究[J]. 中国农机化学报, 2019, 40(1): 61-67. Li Guopeng, Xie Huanxiong, Wang Jialin, et al. Mathematical modeling on hot air drying of Coprinus comatus [J]. Journal of Chinese Agricultural Mechanization, 2019, 40(1): 61-67. [36] 陈治华, 林兴文, 罗映山, 等. 机械热风干燥技术在云南咖啡初加工中的应用[J]. 中国热带农业, 2014(2): 60-61. [37] 杨静园, 董文江, 陆敏泉, 等. 咖啡豆的热风干燥特性及其干燥过程中风味成分变化规律研究[J]. 热带作物学报, 2016, 37(5): 971-978. [38] 董文江, 杨静园, 陆敏泉, 等. 热泵干燥对生咖啡豆活性物质和挥发性成分的影响研究[J]. 现代食品科技, 2016, 32(4): 141-149, 135. [39] 陈治华, 蒋快乐, 罗映山, 等. 6BG-4000自动装卸料背压式热风穿透干燥咖啡豆设备的应用[J]. 中国热带农业, 2016(4): 41-43. [40] Ghosh P, Venkatachalapathy N. Processing and drying of coffee—A review [J]. International Journal of Engineering Research and Technology, 2014. [41] Dong Wenjiang, Cheng Ke, Hu Rongsuo, et al. Effect of microwave vacuum drying on the drying characteristics, color, microstructure, and antioxidant activity of green coffee beans [J]. Molecules, 2018, 23(5): 1146. [42] 程可, 董文江, 胡荣锁, 等. 微波真空干燥对咖啡豆风味成分的影响研究[J]. 热带作物学报, 2018, 39(2): 380-391. Cheng Ke, Dong Wenjiang, Hu Rongsuo, et al. Effect microwave vacuum drying on flavor components of coffee beans [J]. Chinese Journal of Tropical Crops, 2018, 39(2): 380-391. [43] Jindarat W, Sungsoontorn S, Rattanadecho P. Analysis of energy consumption in a combined microwave-hot air spouted bed drying of biomaterial: Coffee beans [J]. Experimental Heat Transfer, 2015, 28(1-6): 107-124. [44] 张鹏, 颜碧, 李江阔, 等. 果蔬微波联合干燥技术研究进展[J]. 包装工程, 2019, 40(19): 16-23. [45] 孙东宇, 郑志安, 李博睿, 等. 杭白菊干燥技术及干燥品质研究进展[J]. 食品与发酵工业, 2020, 46(15): 295-300. Sun Dongyu, Zheng Zhi'an, Li Borui, et al. Research progress on drying technology and drying quality of Chrysanthemum morifolium [J]. Food and Fermentation Industries, 2020, 46(15): 295-300. [46] Suzihaque M U H, Driscoll R. Effects of solar radiation, buoyancy of air flow and optimization study of coffee drying in a heat recovery dryer [J]. Procedia Engineering, 2016, 148: 812-822. [47] Siagian P, Napitupulu F H, Setyawan E Y, et al. Analysis of temperature and velocity distributions in a solar drying box coffee beans [J]. IOP Conference Series Materials Science and Engineering, 2018, 420. [48] Deeto S, Thepa S, Monyakul V, et al. The experimental new hybrid solar dryer and hot water storage system of thin layer coffee bean dehumidification [J]. Renewable Energy, 2017, 115. [49] Manrique R, Vásquez D, Chejne F, et al. Energy analysis of a proposed hybrid solar-biomass coffee bean drying system [J]. Energy, 2020, 202. [50] Malta M R, Rosa S D V F D, Lima P M D, et al. Changes in quality of coffee submitted to different forms of processing and drying [J]. Engenharia Na Agricultura, 2013. [51] Oliveira P D, Borém F M, Isquierdo E P, et al. Physiological aspects of coffee beans, processed and dried through different methods, associated with sensory quality [J]. Coffee Science, 2013, 8(2): 211-220. [52] Alves G E, Borém F M, Isquierdo E P, et al. Physiological and sensorial quality of Arabica coffee subjected to different temperatures and drying airflows [J]. Acta Scientiarum Agronomy, 2017, 39(2): 225. [53] Coradi P C, Saath R, Reinato C H, et al. Adjustment of mathematical models and the quality of drying the pulped coffee at different air conditions [J]. Journal of Agricultural Science and Technology B, 2019, 9(1): 38-48. [54] 胡荣锁, 陆敏泉, 吴桂苹, 等. 基于电子舌的焙炒咖啡不同干燥模式判别[J]. 食品工业科技, 2014, 35(1): 304-306, 317. [55] Cheng Ke, Dong Wenjiang, Long Yuzhou, et al. Evaluation of the impact of different drying methods on the phenolic compounds, antioxidant activity, and in vitro digestion of green coffee beans [J]. Food Science & Nutrition, 2019, 7(3). [56] Hu Guilin, Peng Xingrong, Gao Ya, et al. Effect of roasting degree of coffee beans on sensory evaluation: Research from the perspective of major chemical ingredients [J]. Food Chemistry, 2020, 331(14): 127329. [57] 董文江, 胡荣锁, 宗迎, 等. 利用HS-SPME/GC-MS法对云南主产区生咖啡豆中挥发性成分萃取与分析研究[J]. 农学学报, 2018, 8(9): 71-79. Dong Wenjiang, Hu Rongsuo, Zong Ying, et al. Application of HS-SPME/GC-MS in volatile components analysis of green coffee beans from major production areas in Yunnan Province [J]. Journal of Agriculture, 2018, 8(9): 71-79. [58] Do Livramento K G, Borem F M, Jose A C, et al. Proteomic analysis of coffee grains exposed to different drying process [J]. Food Chemistry, 2017, 221(2): 1874-1882. [59] Kulapichitr F, Borompichaichartkul C, Suppavorasatit I, et al. Impact of drying process on chemical composition and key aroma components of Arabica coffee [J]. Food Chemistry, 2019, 291(S1): 49-58. [60] 于海明, 金中波, 张雪峰, 等. 微波联合热风干燥方式对松茸干燥品质影响研究[J]. 中国农机化学报, 2020, 41(1): 72-78, 88. Yu Haiming, Jin Zhongbo, Zhang Xuefeng, et al. Research of the effect of microwave combined with hot air drying method on drying quality of tricholoma matsutake [J]. Journal of Chinese Agricultural Mechanization, 2020, 41(1): 72-78, 88. [61] 李晓燕, 强秋秋, 樊博玮, 等. 热管—热泵和红外—热泵联合干燥技术在农产品加工中的应用[J]. 食品与机械, 2019, 35(9): 222-225, 232. Li Xiaoyan, Qiang Qiuqiu, Fan Bowei, et al. Application of heat pipe-heat pump and infrared-heat pump in agricultural product processing [J]. Food & Machinery, 2019, 35(9): 222-225, 232. [62] Donovan N K, Foster K A, Salinas A P. Quality management and the economics of green coffee hermetic storage [J]. International Journal of Food and Agricultural Economics, 2020, 8.
|