[ 1 ] 杜娟, 李金, 张涛, 等. 应用real‑time PCR定量检测果园葡萄霜霉病菌潜伏侵染[J]. 江苏农业学报, 2021, 37(4): 861-866.
Du Juan, Li Jin, Zhang Tao, et al. Quantitative detection of latent infection of grape downy mildew in field by real‑time PCR [J]. Jiangsu Journal of Agricultural Sciences, 2021, 37(4): 861-866.
[ 2 ] 杨付前, 马靖艳. 葡萄霜霉病发生规律及防治措施[J]. 林业与生态, 2021(5): 42.
[ 3 ] El‑Helly M, El‑Beltagy S, Rafea A. Image analysis based interface for diagnostic expert systems [C]. Proceedings of the Winter International Synposium on Information and Communication Technologies, Trinity College Dublin, 2004: 1-6.
[ 4 ] Sammany M, Medhat T. Dimensionality reduction using rough set approach for two neural networks‑based applications [A]. Rough Sets and Intelligent Systems Paradigms [M]. Heidelberg: Springer Berlin, 2007.
[ 5 ] 张建华, 孔繁涛, 吴建寨, 等. 基于改进VGG卷积神经网络的棉花病害识别模型[J]. 中国农业大学学报, 2018, 23(11): 161-171.
Zhang Jianhua, Kong Fantao, Wu Jianzhai, et al. Cotton disease identification model based on improved VGG convolution neural network [J]. Journal of China Agricultural University, 2018, 23(11): 161-171.
[ 6 ] 杨森, 冯全, 张建华. 基于深度学习与复合字典的马铃薯病害识别方法[J]. 农业机械学报, 2020, 51(7): 22-29.
Yang Sen, Feng Quan, Zhang Jianhua. Identification method for potato disease based on deep learning and composite dictionary [J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(7): 22-29.
[ 7 ] Wei X K, Yang Z M, Liu Y X, et al. Railway track fastener defect detection based on image processing and deep learning techniques: A comparative study [J]. Engineering Applications of Artificial Intelligence, 2019, 80(4): 66-80.
[ 8 ] 骆润玫, 王卫星. 基于卷积神经网络的植物病虫害识别研究综述[J]. 自动化与信息工程, 2021, 42(5): 1-10.
Luo Runmei, Wang Weixing. Review on plant disease and pest identification based on convolutional neural network [J]. Automation and Information Engineering, 2021, 42(5): 1-10.
[ 9 ] 杨红云, 肖小梅, 黄琼, 等. 基于卷积神经网络和迁移学习的水稻害虫识别[J]. 激光与光电子学进展, 2022, 59(16): 323-330.
Yang Hongyun, Xiao Xiaomei, Huang Qiong, et al. Rice pest identification based on convolutional neural network and transfer learning [J]. Laser & Optoelectronics Progress, 2022, 59(16): 323-330.
[10] Wu Y, Lu Y J. An intelligent machine vision system for detecting surface defects on packing boxes based on support vector machine [J]. Measurement and Control, 2019, 52(7): 1102-1110.
[11] 吕泽卿, 付兴建. 基于改进Canny算法的绝缘子裂缝识别[J]. 北京信息科技大学学报(自然科学), 2020, 35(6): 25-30.
Lü Zeqing, Fu Xingjian. Insulator crack recognition based on improved Canny algorithm [J]. Journal of Beijing Information Science & Technology University, 2020, 35(6): 25-30.
[12] 袁向荣. 边缘识别的二维正交多项式拟合及结构变形检测[J]. 图学学报, 2014, 35(1): 79-84.
Yuan Xiangrong. Orthogonal polynomial fitting for the edge detection and beam deformation measurement [J]. Journal of Graphics, 2014, 35(1): 79-84.
[13] 潘晋新, 景博, 焦晓璇, 等. 多应力耦合条件下氧气浓缩器退化建模[J]. 北京航空航天大学学报, 2023, 49(2): 472-481.
Pan Jinxin, Jing Bo, Jiao Xiaoxuan, et al. Degradation modeling of oxygen concentrator in multiple stress coupling [J]. Journal of Beijing University of Aeronautics and Astronautics, 2023, 49(2): 472-481.
[14] 淮妮. 基于蒙特卡洛的输送机电液伺服系统动态特性分析[J]. 国外电子测量技术, 2021, 40(4): 6-9.
[15] 王卫东, 雷晓鸣, 杜香刚, 等. 基于蒙特卡洛和BIM的CRTSⅢ型板式无砟轨道铺设工期仿真[J]. 中南大学学报(自然科学版), 2019, 50(7): 1655-1661.
Wang Weidong, Lei Xiaoming, Du Xianggang, et al. Period‑simulation of CRTS Ⅲ slab track based on Monte Carlo simulation and BIM [J]. Journal of Central South University (Science and Technology), 2019, 50(7): 1655-1661.
[16] Alaya M B, Kebaier A. Central limit theorem for the multilevel Monte Carlo Euler method [J]. The Annals of Applied Probability, 2015, 25(1): 1050-5164.
|