[1] 易文裕, 程方平, 熊昌国, 等. 农业水肥一体化的发展现状与对策分析[J].中国农机化学报, 2017, 38(10): 111-116.
Yi Wenyu, Chen Fangping, Xiong Changguo, et al. Development status and countermeasures of integrative water and fertilizer in agriculture [J]. Journal of Chinese Agricultural Mechanization, 2017, 38(10): 111-116.
[2] Majumder M, Saha A K. Artificial neural network [M]. Springer International Publishing, 2017: 23-34.
[3] Tang Jiexiong, Deng Chenwei, Huang Guangbin. Extreme learning machine for multilayer perceptron [J]. IEEE Transactions on Neural Networks & Learning Systems, 2017, 13(4): 809-821.
[4] Sheoran K, Tomar P, Mishra R. A novel quality prediction model for component based software system using ACONM optimized extreme learning machine [J]. Cognitive Neurodynamics, 2020, 14(2): 509-522.
[5] Liu Che, Sun Bo, Zhang Chenghui, et al. A hybrid prediction model for residential electricity consumption using holtwinters and extreme learning machine [J]. Applied Energy, 2020, 275(1): 115-138.
[6] Hazir E, Ozcan T, Kücük H. Prediction of adhesion strength using extreme learning machine and support vector regression optimized with genetic algorithm [J]. Arabian Journal for Science and Engineering, 2020, 45(8): 6985-7004.
[7] Suchithra M S, Pai M L. Improving the prediction accuracy of soil nutrient classification by optimizing extreme learning machine parameters [J]. InformationProcessing in Agriculture, 2019, 7(1): 72-82.
[8] Bz A, Yu F, Dg B, et al. Hybrid particle swarm optimization with extreme learning machine for daily reference evapotranspiration prediction from limited climatic data [J]. Computers and Electronics in Agriculture, 2020, 173(6): 105-130.
[9] Ska B, Skp C, Rs D. A novel hybrid model based on particle swarm optimization and extreme learning machine for shortterm temperature prediction using ambient sensors [J]. Sustainable Cities and Society, 2019, 49(8): 101-106.
[10] Vidhya S, Kamaraj V. Particle swarm optimized extreme learning machine for feature classification in power quality data mining [J]. Automatika, 2017, 58(4): 487-494.
[11] 李明军, 王均星, 王亚洲. 基于改进粒子群优化算法和极限学习机的混凝土坝变形预测[J]. 天津大学学报(自然科学与工程技术版), 2019, 52(11): 1136-1144.
Li Mingjun, Wang Junxing, Wang Yazhou. Deformation prediction of concrete dam based on improved particle swarm optimization algorithm and extreme learning machine [J]. Journal of Tianjin University (Science and Technology), 2019, 52(11): 1136-1144.
[12] Zkf A, Wjn B, Rui Z C, et al. Operation rule derivation of hydropower reservoir by kmeans clustering method and extreme learning machine based on particle swarm optimization [J]. Journal of Hydrology, 2019, 98(1): 229-238.
[13] Xue Jiankai, Shen Bin. A novel swarm intelligence optimization approach: Sparrow search algorithm [J]. Systems Science & Control Engineering, 2020, 8(1): 22-34.
[14] Li Huangmen, Zhang Yong. Study of transformer fault diagnosis based on sparrow optimization algorithm [C]. CCRIS 2020: 2020 International Conference on Control, Robotics and Intelligent System, 2020: 63-66.
[15] 吕鑫, 慕晓冬, 张钧. 基于改进麻雀搜索算法的多阈值图像分割[J]. 系统工程与电子技术, 2021, 43(2): 318-327.
Lü Xin, Mu Xiaodong, Zhang Jun. Multithreshold image segmentation based on improved sparrow search algorithm [J]. Systems Engineering and Electronics, 2021, 43(2): 318-327.
[16] 尹德鑫, 张达敏, 张琳娜, 等. 认知工业物联网中基于麻雀搜索算法的频谱分配策略[J]. 数据采集与处理, 2022, 37(2): 371-382.
Yin Dexin, Zhang Damin, Zhang Linna, et al. Spectrum allocation strategy based on sparrow algorithm in cognitive industrial internet of things [J]. Journal of Data Acquisition and Processing, 2022, 37(2): 371-382.
[17] 邓百川, 徐睿, 黄成勇, 等. 基于柯西变异麻雀搜索算法的无人机三维航迹规划[J]. 机械设计与研究, 2022, 38(1): 62-66.
Deng Baichuan, Xu Rui, Huang Chengyong, et al. Three dimensional flight path planning for unmanned aerial vehicles based on cauchy mutation sparrow search algorithm [J]. Machine Design and Research, 2022, 38(1): 62-66.
[18] Li Sai, Fang Huajing, Liu Xiaoyong. Parameter optimization of support vector regression based on sine cosine algorithm [J]. Expert Systems with Applications, 2018, 91(1): 63-77.
[19] 宋妮娜, 肖冬, 李森, 等. 基于光谱和改进极限学习机的土壤含盐量分析[J]. 光谱学与光谱分析, 2022, 42(8): 2482-2487.
Song Nina, Xiao Dong, Li Sen, et al. Analysis of soil salinity based on spectrum and RVIPSOMELM [J]. Spectroscopy and Spectral Analysis, 2022, 42(8): 2482-2487.
[20] 李向龙, 赵洪丽, 赵红莉, 等. 极限学习机模型的土壤含水量反演研究[J]. 测绘科学, 2021, 46(12): 91-97.
Li Xianglong, Zhao Hongli, Zhao Hongli, et al. Soil water content inversion based on extreme learning machine model [J]. Science of Surveying and Mapping, 2021, 46(12): 91-97.
[21] 程东娟, 王丽玄, 王利书, 等. 秸秆还田下基肥施用方式与肥量对土壤水分及玉米产量的影响[J]. 节水灌溉, 2018(10): 14-19.
Cheng Dongjuan, Wang Lixuan, Wang Lishu, et al. Effects of application methods and amount of base fertilizer on soil moisture and maize yield under straw returning [J]. Water Saving Irrigation, 2018(10): 14-19.
[22] 沙清. 土壤供肥量的动态结构探讨[J]. 中国土壤与肥料, 2012 (5): 67-72.
Sha Qing. Probe into the dynamic structure of soil for fertilizer [J]. Soil and Fertilizer Sciences in China, 2012(5): 67-72.
|