English

中国农机化学报

中国农机化学报 ›› 2023, Vol. 44 ›› Issue (10): 174-184.DOI: 10.13733/j.jcam.issn.2095-5553.2023.10.025

• 农业信息化工程 • 上一篇    下一篇

基于改进SSA算法优化极限学习机模型的土壤供肥量预测

李井竹1,刘秋菊2,王仲英3, 4   

  1. 1. 河南牧业经济学院信息工程学院,郑州市,450032; 2. 郑州工程技术学院信息工程学院,
    郑州市,450032; 3. 河南经贸职业学院工程经济学院,郑州市,450018;
    4. 河南省智慧农业远程环境监测控制工程技术研究中心应用技术研究院,郑州市,450018
  • 出版日期:2023-10-15 发布日期:2023-11-09
  • 基金资助:
    河南省高等教育教学改革研究与实践重点项目(2021SJGLX286);河南省科技厅国际联合实验室建设项目(12);教育部供需对接就业育人项目(20220103859)

Prediction of soil fertilizer for optimizing extreme learning machine based on improved SSA algorithm

Li Jingzhu1, Liu Qiuju2, Wang Zhongying3,  4   

  • Online:2023-10-15 Published:2023-11-09

摘要: 针对传统农业灌溉系统中土壤供肥量预测准确率低、效率差的问题,提出基于改进麻雀搜索算法优化极限学习机(MHISSAELM)的农作物土壤供肥量预测模型。首先,引入飞行引领、分段权重正余弦优化发现者位置更新、警戒者步长因子非线性更新和变异对立学习机制,对传统麻雀搜索算法的盲目飞行、种群多样性、全局搜索与局部开发均衡性及跳离局部最优的全局搜索能力进行改进,提高算法寻优性能,实现多策略混合改进麻雀搜索算法MHISSA。然后,为提高极限学习机ELM的预测精度和泛化能力,利用MHISSA算法迭代优化ELM网络的关键参数:连接权重和隐含层偏差,并以农作物土壤供肥量预测为目标,构建基于MHISSA优化极限学习机的土壤供肥量预测模型。试验结果表明,与同类的四种预测模型相比,MHISSAELM的预测曲线与实际曲线最贴近,预测误差可以控制在[-10, 15]kg/hm2之间,最大相对误差为4.8%,绝对百分比误差MAPE为1.7%,预测精度为所有对比模型中最高,模型在农业智能灌溉领域具有实用性。

关键词: 麻雀搜索算法, 极限学习机, 土壤供肥量预测, 智能灌溉, 智能农业

Abstract: Aiming at the shortcomings of low accuracy and poor efficiency of soil fertilizer prediction in traditional agricultural irrigation system, an agricultural soil fertilizer prediction model MHISSAELM based on improved sparrow search algorithm and optimized limit learning machine is proposed. Firstly, the blind flight, the population diversity, the balance between global search and local development, and the global search ability to jump from local optimization of the traditional sparrow search algorithm are improved by introducing the flight guidance, the piecewise weighted sine cosine optimization, the discoverer position update, the vigilant step factor nonlinear update and the mutation opposition learning mechanism, so as to improve the optimization performance of the algorithm and realize the multistrategy hybrid improved sparrow search algorithm MHISSA. Then, in order to improve the prediction accuracy and generalization ability of limit learning machine elm, MHISSA algorithm is used to iteratively optimize the connection weight and hidden layer deviation of ELM network. Aiming at the prediction of agricultural soil fertilizer, a soil fertilizer prediction model MHISSAELM based on MHISSA optimized limit learning machine is constructed. The analysis of experimental results shows that compared with the four similar comparison models, the prediction curve of MHISSAELM is closest to the actual curve. The prediction error can be controlled between [-10, 15]kg/hm2, the maximum relative error is 4.8%, the absolute percentage error is 1.7% in MHISSAELM. And the prediction accuracy is the highest among all comparison models, and is practical in the field of agricultural intelligent irrigation.

Key words: sparrow search algorithm, extreme learning machine, soil fertilizer prediction, intelligent irrigation, intelligent agriculture

中图分类号: