[1] 王学雷. 一种基于混联机构的割胶机器人运动控制技术研究[D]. 北京: 中国农业大学, 2018.Wang Xuelei. Research on motion control technology of rubbertapping robot based on hybrid mechanism [D]. Beijing: China Agricultural University, 2018.
[2] 魏芳, 校现周, 罗世巧, 等. 橡胶树针刺采胶技术的应用前景[J]. 热带农业科学, 2020, 40(10): 17-20.Wei Fang, Xiao Xianzhou, Luo Shiqiao, et al. Application prospect of rubber tree puncture tapping [J]. Chinese Journal of Tropical Agriculture, 2020, 40(10): 17-20.
[3] 杨文凤, 黄学全, 校现周. 从割胶技术方面解决胶工短缺的探讨[J]. 中国热带农业, 2015(5): 7-10.
[4] 姚双吉, 石岩, 赵丁选, 等. 欠驱动形状自适应气动夹具夹持稳定性[J]. 机械工程学报, 2018, 54(20): 189-196.
Yao Shuangji, Shi Yan, Zhao Dingxuan, et al. Underactuated shape selfadaptive pneumatic fixture clamping stability [J]. Journal of Mechanical Engineering, 2018, 54(20): 189-196.
[5] Odhner L U, Jentoft L P, Claffee M R, et al. A compliant, underactuated hand for robust manipulation [J]. The International Journal of Robotics Research, 2014, 33(5): 736-752.
[6] Kragten G A, Van der Helm F C T, Herder J L. A planar geometric design approach for a large grasp range in underactuated hands [J]. Mechanism and Machine Theory, 2011, 46(8): 1121-1136.
[7] 王文玥, 赵清海, 张洪信, 等. 比例—积分—微分控制算法求解结构拓扑优化问题[J]. 机械科学与技术, 2021, 40(2): 223-229.
Wang Wenyue, Zhao Qinghai, Zhang Hongxin, et al. Proportionalintegraldifferential control method on solving structural topology optimization problems [J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(2): 223-229.
[8] 罗磊, 黄威, 黄琳, 等. 柔性化夹具静动态特性分析及拓扑优化[J]. 机械设计与研究, 2020, 36(1): 141-148.
Luo Lei, Huang Wei, Huang Lin, et al. Static and dynamic characteristics analysis and topology optimization of flexible fixture [J]. Machine Design & Research, 2020, 36(1): 141-148.
[9] 任帅阳, 高爱民, 张勇, 等. 六旋翼植保无人机旋翼折叠机构有限元分析及拓扑优化[J]. 中国农机化学报, 2021, 42(9): 53-58, 194.
Ren Shuiyang, Gao Aimin, Zhang Yong, et al. Finite element analysis and topology optimization of folding mechanism of sixrotor plant protection UAV [J]. Journal of Chinese Agricultural Mechanization, 2021, 42(9): 53-58, 194.
[10] 闫晓磊, 谢露, 陈佳文, 等. 一种密度约束的拓扑优化方法[J]. 机械科学与技术, 2021, 40(3): 350-355.
Yan Xiaolei, Xie Lu, Chen Jiawen, et al. A densityconstrained topological optimization method [J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(3): 350-355.
[11] 赖欣, 师靖远, 彭天宇, 等. 爬壁机器人变密度拓扑优化吸附结构研究[J]. 机械科学与技术, 2021, 40(6):821-827.
Lai Xin, Shi Jingyuan, Peng Tianyu, et al. Research on adsorption structure of wall climbing robot with variable density topology optimization [J]. Mechanical Science and Technology for Aerospace Engineering, 2021, 40(6): 821-827.
[12] Luo Y, Xing J, Kang Z. Topology optimization using materialfield series expansion and Krigingbased algorithm: An effective nongradient method [J]. Computer Methods in Applied Mechanics and Engineering, 2020, 364: 112966.
[13] Lim J, You C, Dayyani I. Multiobjective topology optimization and structural analysis of periodic spaceframe structures [J]. Materials & Design, 2020, 190: 108552.
[14] 胡启国, 周松. 考虑刚柔耦合的工业机器人多目标可靠性拓扑优化[J]. 计算机集成制造系统, 2020, 26(3): 623-631.
Hu Qiguo, Zhou Song. Multiobjective reliability topology optimization analysis of rigidflexible coupling industrial robots [J]. Computer Integrated Manufacturing Systems, 2020, 26(3): 623-631.
[15] 聂文建. 基于变密度拓扑优化方法的算法改进研究[D]. 大连: 大连理工大学, 2019.Nie Wenjian. Research on algorithmmodifications based on densitybased topology optimization [D]. Dalian: Dalian University of Technology, 2019.
[16] 张永杰, 徐红梅, Jay H Kim, 等. 锤片式饲料粉碎机架板的有限元分析及拓扑优化[J]. 华中农业大学学报, 2019, 38(5): 159-167.
Zhang Yongjie, Xu Hongmei, Jay H Kim, et al. Finite element analyses and topology optimization of hammer feed grinder frame plate [J]. Journal of Huazhong Agricultural University, 2019, 38(5): 159-167.
[17] 周方思, 李立君, 欧阳益斌. 基于ANSYS的除草机车架轻量化研究[J]. 林业工程学报, 2017, 2(6): 103-109.
Zhou Fangsi, Li Lijun, Ouyang Yibin. Lightweight research of mower frame based on ANSYS [J]. Journal of Forestry Engineering, 2017, 2(6): 103-109.
|